Some remarks on the linearized operator about the radial solution for the Ginzburg-Landau equation

被引:5
作者
Beaulieu, A [1 ]
机构
[1] Univ Marne Vallee, Lab Anal & Math Appl, CNRS, UMR 8050, F-77454 Marne La Vallee 2, France
关键词
Ginzburg-Landau operator; linearized operator; eigenvalues; radial solutions; stability;
D O I
10.1016/S0362-546X(03)00128-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the linearized operators, denoted L-d,L-1, of the Ginzburg-Landau operator Deltau + u(1 - \u\(2)) in R-2, about the radial solutions U-d,U-1(X) = f(d)(r)e(idtheta), for all d greater than or equal to 1. We state the correspondence between the real vector space of the bounded solutions of the equation L(d,1)w=0 and the eigenvalues of the linearized operators of the equations Deltau + 1/epsilon(2)u(1 - \u\(2)) = 0, in W B(0, 1), about the radial solutions u(d,epsilon)(x) = f(d)(r/epsilon)e(idtheta), that tend to 0 as epsilon tends to 0. (C) 2003 Published by Elsevier Ltd.
引用
收藏
页码:1079 / 1119
页数:41
相关论文
共 11 条
[1]  
Almeida L, 1997, HOUSTON J MATH, V23, P733
[2]  
[Anonymous], GINZBURG LANDAU VORT
[3]   A bifurcation analysis for the Ginzburg-Landau equation [J].
Comte, M ;
Mironescu, P .
ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 1998, 144 (04) :301-311
[4]   Minimizing properties of arbitrary solutions to the Ginzburg-Landau equation [J].
Comte, M ;
Mironescu, P .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1999, 129 :1157-1169
[5]   SPIRAL WAVES IN REACTION-DIFFUSION EQUATIONS [J].
HAGAN, PS .
SIAM JOURNAL ON APPLIED MATHEMATICS, 1982, 42 (04) :762-786
[6]  
HERVE RM, 1994, ANN I H POINCARE-AN, V11, P427
[7]  
LIN FH, 1995, ANN I H POINCARE-AN, V12, P599
[8]  
Lin TC, 1997, COMMUN PART DIFF EQ, V22, P619
[9]  
LIN TC, SPECTRUM LINEARIZED
[10]   ON THE STABILITY OF RADIAL SOLUTIONS OF THE GINZBURG-LANDAU EQUATION [J].
MIRONESCU, P .
JOURNAL OF FUNCTIONAL ANALYSIS, 1995, 130 (02) :334-344