Relation between Quantum Walks with Tails and Quantum Walks with Sinks on Finite Graphs

被引:5
作者
Konno, Norio [1 ]
Segawa, Etsuo [2 ]
Stefanak, Martin [3 ]
机构
[1] Yokohama Natl Univ, Dept Appl Math, Yokohama, Kanagawa 2408501, Japan
[2] Yokohama Natl Univ, Grad Sch Environm Informat Sci, Yokohama, Kanagawa 2408501, Japan
[3] Czech Tech Univ, Fac Nucl Sci & Phys Engn, Dept Phys, Brehova 7, Prague 11519 1, Czech Republic
来源
SYMMETRY-BASEL | 2021年 / 13卷 / 07期
基金
日本学术振兴会;
关键词
quantum walk; survival probability; attractor eigenspace; dressed photon;
D O I
10.3390/sym13071169
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
We connect the Grover walk with sinks to the Grover walk with tails. The survival probability of the Grover walk with sinks in the long time limit is characterized by the centered generalized eigenspace of the Grover walk with tails. The centered eigenspace of the Grover walk is the attractor eigenspace of the Grover walk with sinks. It is described by the persistent eigenspace of the underlying random walk whose support has no overlap to the boundaries of the graph and combinatorial flow in graph theory.
引用
收藏
页数:21
相关论文
共 19 条
[1]   QUANTUM WALKS AND THEIR ALGORITHMIC APPLICATIONS [J].
Ambainis, Andris .
INTERNATIONAL JOURNAL OF QUANTUM INFORMATION, 2003, 1 (04) :507-518
[2]  
[Anonymous], 2001, P 33 ANN ACM S THEOR, DOI [10.1145/380752.380757, DOI 10.1145/380752.380757]
[3]   One-dimensional quantum walks with absorbing boundaries [J].
Bach, E ;
Coppersmith, S ;
Goldschen, MP ;
Joynt, R ;
Watrous, J .
JOURNAL OF COMPUTER AND SYSTEM SCIENCES, 2004, 69 (04) :562-592
[4]  
Feldman E, 2005, CONTEMP MATH, V381, P71
[5]   Modifying quantum walks: a scattering theory approach [J].
Feldman, Edgar ;
Hillery, Mark .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (37) :11343-11359
[6]   A dynamical system induced by quantum walk [J].
Higuchi, Yusuke ;
Segawa, Etsuo .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (39)
[7]   Spectral and asymptotic properties of Grover walks on crystal lattices [J].
Higuchi, Yusuke ;
Konno, Norio ;
Sato, Iwao ;
Segawa, Etsuo .
JOURNAL OF FUNCTIONAL ANALYSIS, 2014, 267 (11) :4197-4235
[8]   One-dimensional three-state quantum walk [J].
Inui, N ;
Konno, N ;
Segawa, E .
PHYSICAL REVIEW E, 2005, 72 (05)
[9]   Absorption problems for quantum walks in one dimension [J].
Konno, N ;
Namiki, T ;
Soshi, T ;
Sudbury, A .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2003, 36 (01) :241-253
[10]   Hitting time for quantum walks on the hypercube [J].
Krovi, H ;
Brun, TA .
PHYSICAL REVIEW A, 2006, 73 (03)