Global optimization of grey-box computational systems using surrogate functions and application to highly constrained oil-field operations

被引:64
作者
Beykal, Burcu [1 ,2 ]
Boukouvala, Fani [3 ]
Floudas, Christodoulos A. [1 ,2 ]
Sorek, Nadav [4 ]
Zalavadia, Hardikkumar [4 ]
Gildin, Eduardo [4 ]
机构
[1] Texas A&M Univ, Artie McFerrin Dept Chem Engn, College Stn, TX 77843 USA
[2] Texas A&M Univ, Texas A&M Energy Inst, College Stn, TX 77843 USA
[3] Georgia Inst Technol, Sch Chem & Biomol Engn, Atlanta, GA 30332 USA
[4] Texas A&M Univ, Harold Vance Dept Petr Engn, College Stn, TX 77843 USA
关键词
Derivative-free optimization; Grey/black-box optimization; Oilfield operations; Oil-well control; Waterflooding; DERIVATIVE-FREE OPTIMIZATION; ADAPTIVE DIRECT SEARCH; JOINT OPTIMIZATION; MODELS; ALGORITHMS;
D O I
10.1016/j.compchemeng.2018.01.005
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
This work presents recent advances within the AlgoRithms for Global Optimization of coNstrAined grey-box compUTational problems (ARGONAUT) framework, developed for optimization of systems which lack analytical forms and derivatives. A new parallel version of ARGONAUT (p-ARGONAUT) is introduced to solve high dimensional problems with a large number of constraints. This development is motivated by a challenging case study, namely the operation of an oilfield using water-flooding. The objective of this case study is the maximization of the Net Present Value over a five-year time horizon by manipulating the well pressures, while satisfying a set of complicating constraints related to water-cut limitations and water handling and storage. Dimensionality reduction is performed via the parametrization of the pressure control domain, which is then followed by global optimization of the constrained grey-box system. Results are presented for multiple case studies and the performance of p-ARGONAUT is compared to existing derivative-free optimization methods. Published by Elsevier Ltd.
引用
收藏
页码:99 / 110
页数:12
相关论文
共 62 条
  • [1] [Anonymous], 14 EUR C MATH OIL RE
  • [2] [Anonymous], ADV OPTIMIZATION NUM, DOI DOI 10.1007/978-94-015-8330-5_4
  • [3] [Anonymous], J COMPUT PHYS
  • [4] [Anonymous], SPERESERV SIMUL S SO
  • [5] [Anonymous], WATER CONTROL
  • [6] Production optimization using derivative free methods applied to Brugge field case
    Asadollahi, Masoud
    Naevdal, Geir
    Dadashpour, Mohsen
    Kleppe, Jon
    [J]. JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2014, 114 : 22 - 37
  • [7] Mesh adaptive direct search algorithms for constrained optimization
    Audet, C
    Dennis, JE
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2006, 17 (01) : 188 - 217
  • [8] A PROGRESSIVE BARRIER FOR DERIVATIVE-FREE NONLINEAR PROGRAMMING
    Audet, Charles
    Dennis, J. E., Jr.
    [J]. SIAM JOURNAL ON OPTIMIZATION, 2009, 20 (01) : 445 - 472
  • [9] Avansi G.D., 2015, Int. J. Model. Simul. Pet. Ind., V9, P21
  • [10] Inexact Restoration method for nonlinear optimization without derivatives
    Belen Arouxet, Ma.
    Echebest, Nelida E.
    Pilotta, Elvio A.
    [J]. JOURNAL OF COMPUTATIONAL AND APPLIED MATHEMATICS, 2015, 290 : 26 - 43