The plasma enhanced surface reactions in a packed bed dielectric barrier discharge reactor

被引:25
作者
Cheng, He [1 ]
Ma, Mingyu [1 ]
Zhang, Yanzhe [1 ]
Liu, Dawei [1 ]
Lu, Xinpei [1 ]
机构
[1] Huazhong Univ Sci & Technol, State Key Lab Adv Electromagnet Engn & Technol, Sch Elect & Elect Engn, Wuhan 430074, Hubei, Peoples R China
基金
中国国家自然科学基金;
关键词
CO2; conversion; ns pulse plasma; heterogeneous reactions; packed bed dielectric barrier discharge; CARBON-DIOXIDE; CATALYSIS; COMBINATION; REDUCTION; METHANE;
D O I
10.1088/1361-6463/ab651e
中图分类号
O59 [应用物理学];
学科分类号
摘要
The conversion and utilization of CO2 is one of the greatest global challenges. Plasma assisted catalysis provide a new resolution to this problem. However, the energy efficiency and conversion rates of the plasma process are still insufficient for industrial applications. The key reasons are the highly complex interaction between gaseous plasma and catalytic materials, especially in packed bed dielectric barrier discharges. Our study fills this critical gap by developing a novel numerical approach to study how the ns pulse driving plasma trigger the heterogeneous reactions on the Ni/gamma-Al2O3 catalyst surface. The development of plasma inside the reactor is in the form of surface ionization wave (SIW) + filamentary microdischarges. The high electron power in the SIW region and the high ion power density in the sheath region on the catalysts surface provide enough energy to trigger heterogenous reactions. The heterogeneous reactions not only generate the local high CO density region near the Ni/gamma-Al2O3 surface, but also increases the space averaged density of CO. The extension of activation time of catalytic material can significantly increase the conversion efficiency of CO2.
引用
收藏
页数:10
相关论文
共 39 条
[1]   Influence of Vibrational States on CO2 Splitting by Dielectric Barrier Discharges [J].
Aerts, Robby ;
Martens, Tom ;
Bogaerts, Annemie .
JOURNAL OF PHYSICAL CHEMISTRY C, 2012, 116 (44) :23257-23273
[2]   Burning questions of plasma catalysis: Answers by modeling [J].
Bogaerts, Annemie ;
Zhang, Quan-Zhi ;
Zhang, Yu-Ru ;
Van Laer, Koen ;
Wang, Weizong .
CATALYSIS TODAY, 2019, 337 :3-14
[3]   Carbon capture and storage update [J].
Boot-Handford, M. E. ;
Abanades, J. C. ;
Anthony, E. J. ;
Blunt, M. J. ;
Brandani, S. ;
Mac Dowell, N. ;
Fernandez, J. R. ;
Ferrari, M. -C. ;
Gross, R. ;
Hallett, J. P. ;
Haszeldine, R. S. ;
Heptonstall, P. ;
Lyngfelt, A. ;
Makuch, Z. ;
Mangano, E. ;
Porter, R. T. J. ;
Pourkashanian, M. ;
Rochelle, G. T. ;
Shah, N. ;
Yao, J. G. ;
Fennell, P. S. .
ENERGY & ENVIRONMENTAL SCIENCE, 2014, 7 (01) :130-189
[4]   Catalytic fast pyrolysis of glucose with HZSM-5: The combined homogeneous and heterogeneous reactions [J].
Carlson, Torren R. ;
Jae, Jungho ;
Lin, Yu-Chuan ;
Tompsett, Geoffrey A. ;
Huber, George W. .
JOURNAL OF CATALYSIS, 2010, 270 (01) :110-124
[5]   Nanosecond pulse plasma dry reforming of natural gas [J].
Cheng, He ;
Fan, Jin ;
Zhang, Yuantao ;
Liu, Dawei ;
Ostrikov, Kostya .
CATALYSIS TODAY, 2020, 351 :103-112
[6]  
Demidiouk V, 2003, J KOREAN PHYS SOC, V42, pS966
[7]   Electric field vector measurements in a surface ionization wave discharge [J].
Goldberg, Benjamin M. ;
Boehm, Patrick S. ;
Czarnetzki, Uwe ;
Adamovich, Igor V. ;
Lempert, Walter R. .
PLASMA SOURCES SCIENCE & TECHNOLOGY, 2015, 24 (05)
[8]   C2H2 oxidation by plasma/TiO2 combination:: Influence of the porosity, and photocatalytic mechanisms under plasma exposure [J].
Guaitella, O. ;
Thevenet, F. ;
Puzenat, E. ;
Guillard, C. ;
Rousseau, A. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2008, 80 (3-4) :296-305
[9]   Methane reforming kinetics within a Ni-YSZ SOFC anode support [J].
Hecht, ES ;
Gupta, GK ;
Zhu, HY ;
Dean, AM ;
Kee, RJ ;
Maier, L ;
Deutschmann, O .
APPLIED CATALYSIS A-GENERAL, 2005, 295 (01) :40-51
[10]   Influence of ferroelectric materials and catalysts on the performance of non-thermal plasma (NTP) for the removal of air pollutants [J].
Holzer, F ;
Kopinke, FD ;
Roland, U .
PLASMA CHEMISTRY AND PLASMA PROCESSING, 2005, 25 (06) :595-611