Harmonic behaviour of conformal densities and Martin boundary

被引:7
作者
Roblin, Thomas [1 ]
机构
[1] Univ Paris 06, CNRS, Lab Probabilites & Modeles Aleatoires, UMR 7599, F-75252 Paris 05, France
来源
BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE | 2011年 / 139卷 / 01期
关键词
Mesures de Patterson-Sullivan; groupes discrets; courbure negative; theorie du potentiel; frontiere de Martin; groupes hyperboliques; NEGATIVE CURVATURE; SPACES;
D O I
10.24033/bsmf.2602
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
(Harmonic behaviour of conformal densities and Martin boundary) By treating the Poincare series of a discrete group of isometries in negative curvature like a Creep kernel, we set up a potential theory enough comparable to the classical theory, which allows us to draw a parallel between conformal densities and harmonic densities, and in particular to define a Martin boundary in which ergodic densities make up the minimal part, and even to give a geometrical identification of it under a hyperbolicity assumption.
引用
收藏
页码:97 / 128
页数:32
相关论文
共 22 条
[1]   NEGATIVELY CURVED MANIFOLDS, ELLIPTIC-OPERATORS, AND THE MARTIN BOUNDARY [J].
ANCONA, A .
ANNALS OF MATHEMATICS, 1987, 125 (03) :495-536
[2]  
[Anonymous], 1983, GEOMETRY DISCRETE GR
[3]  
[Anonymous], PROGR MATH
[4]  
[Anonymous], 1969, Lectures on Analysis.
[5]  
Ballmann W., 1996, SEMIN C, V1, P77
[6]  
Ballmann W., 1995, DMV SEMINAR, V25
[7]  
Bourdon M., 1995, LEnseign. Math, V41, P63
[8]  
CHOQUET G, 1956, CR HEBD ACAD SCI, V243, P635
[9]   Harmonicity of quasiconformal measures and poisson boundaries of hyperbolic spaces [J].
Connell, Chris ;
Muchnik, Roman .
GEOMETRIC AND FUNCTIONAL ANALYSIS, 2007, 17 (03) :707-769
[10]  
Dellacherie C., 1978, Probabilities and potential, V29