SUMS OF HERMITIAN SQUARES ON PSEUDOCONVEX BOUNDARIES

被引:0
作者
Putinar, Mihai [1 ]
Scheiderer, Claus [2 ]
机构
[1] Univ Calif Santa Barbara, Dept Math, Santa Barbara, CA 93106 USA
[2] Univ Konstanz, Fachbereich Math & Stat, D-78457 Constance, Germany
基金
美国国家科学基金会;
关键词
THEOREM;
D O I
暂无
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We give an abstract characterization of all real algebraic subvarieties of complex affine space on which every positive polynomial is a sum of hermitian squares, and we find obstructions to this phenomenon. As a consequence we construct a strictly pseudoconvex domain with smooth algebraic boundary on which there exists a degree two positive polynomial which is not a sum of hermitian squares, answering thus in the negative a question of John D'Angelo.
引用
收藏
页码:1047 / 1053
页数:7
相关论文
共 14 条
[1]   HOLOMORPHIC KERNELS AND COMMUTING OPERATORS [J].
ATHAVALE, A .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1987, 304 (01) :101-110
[2]  
Bochnak J., 1998, ERG MATH GRENZGEB, V36
[3]  
Catlin DW, 1996, MATH RES LETT, V3, P149
[4]  
Catlin DW, 1999, MATH RES LETT, V6, P43
[5]  
D'Angelo JP, 2009, IMA VOL MATH APPL, V149, P1
[6]   Complex variables analogues of Hilbert's seventeenth problem [J].
D'Angelo, JP .
INTERNATIONAL JOURNAL OF MATHEMATICS, 2005, 16 (06) :609-627
[7]  
DANGELO JP, 2003, ASIAN J MATH, V7, P1
[8]  
LEMPERT L, 1990, INT J MATH, V1, P91, DOI DOI 10.1142/S0129167X90000071.MR
[10]  
Prestel A., 2001, SPRINGER MG MATH