MnCo2O4/g-C3N4 composite material preparation and its capacitance performance

被引:4
作者
Wang, Qing [1 ,2 ]
Li, Yirong [1 ]
Gao, Haoran [1 ]
Dai, Jianfeng [1 ,2 ]
Li, Weixue [1 ,2 ]
机构
[1] Lanzhou Univ Technol, Sch Sci, Lanzhou 730050, Gansu, Peoples R China
[2] Lanzhou Univ Technol, State Key Lab Adv Proc & Recycling Nonferrous Met, Lanzhou 730050, Gansu, Peoples R China
来源
INTERNATIONAL JOURNAL OF MODERN PHYSICS B | 2021年 / 35卷 / 31期
关键词
Supercapacitor; MnCo2O4; hydrothermal synthesis; electrochemistry; energy storage and conversion; ELECTRODE MATERIALS; CARBON; FABRICATION; ENERGY; SUPERCAPACITOR;
D O I
10.1142/S0217979221503197
中图分类号
O59 [应用物理学];
学科分类号
摘要
MnCo2O4/g-C3N4 composite material was synthesized by the hydrothermal method, compared with MnCo2O4 without g-C3N4, it has excellent electrochemical performance. The composite material can reach a specific capacitance of 350 Fg(-1) at 1 Ag-1. The capacity retention rate is 96% after 1000 cycles at the rate of 2 Ag-1. Experiments show that g-C3N4 can effectively disperse and improve the conductivity of urchin-like MnCo2O4, and the composite of sufficient g-C3N4 can give full play to the performance of urchin-like MnCo2O4, provide faster electronic transport channels, effectively improve the ion migration rate, and make urchin-like MnCo2O4 increase the rate performance under high charge and discharge rates.
引用
收藏
页数:9
相关论文
共 20 条
[1]   Template-free synthesis of novel flower-like MnCo2O4 hollow microspheres for application in supercapacitors [J].
Che, Hongwei ;
Liu, Aifeng ;
Mu, Jingbo ;
Wu, Chunxia ;
Zhang, Xiaoliang .
CERAMICS INTERNATIONAL, 2016, 42 (02) :2416-2424
[2]   Advanced Cathode Materials for Sodium-Ion Batteries: What Determines Our Choices? [J].
Dai, Zhengfei ;
Mani, Ulaganathan ;
Tan, Hui Teng ;
Yan, Qingyu .
SMALL METHODS, 2017, 1 (05)
[3]   Formation of g-C3N4@Ni(OH)2 Honeycomb Nanostructure and Asymmetric Supercapacitor with High Energy and Power Density [J].
Dong, Bitao ;
Li, Mingyan ;
Chen, Sheng ;
Ding, Dawei ;
Wei, Wei ;
Gao, Guoxin ;
Ding, Shujiang .
ACS APPLIED MATERIALS & INTERFACES, 2017, 9 (21) :17890-17896
[4]   A general fabrication approach on spinel MCo2O4 (M = Co, Mn, Fe, Mg and Zn) submicron prisms as advanced positive materials for supercapacitor [J].
Gao, Hongyan ;
Li, Yafei ;
Zhao, Haihong ;
Xiang, Junjie ;
Cao, Yan .
ELECTROCHIMICA ACTA, 2018, 262 :241-251
[5]   Highly porous graphitic biomass carbon as advanced electrode materials for supercapacitors [J].
Gong, Youning ;
Li, Delong ;
Luo, Chengzhi ;
Fu, Qiang ;
Pan, Chunxu .
GREEN CHEMISTRY, 2017, 19 (17) :4132-4140
[6]   Fabrication of a High-Performance Hybrid Supercapacitor Based on Hydrothermally Synthesized Highly Stable Cobalt Manganese Phosphate Thin Films [J].
Katkar, Pranav K. ;
Marje, Supriya J. ;
Parale, Vinayak G. ;
Lokhande, Chandrakant D. ;
Gunjakar, Jayavant L. ;
Park, Hyung-Ho ;
Patil, Umakant M. .
LANGMUIR, 2021, 37 (17) :5260-5274
[7]   The specific capacitance of sol-gel synthesised spinel MnCo2O4 in an alkaline electrolyte [J].
Kong, Ling-Bin ;
Lu, Chao ;
Liu, Mao-Cheng ;
Luo, Yong-Chun ;
Kang, Long ;
Li, Xiaohong ;
Walsh, Frank C. .
ELECTROCHIMICA ACTA, 2014, 115 :22-27
[8]   Mesoporous MnCo2O4.5 nanoneedle arrays electrode for high-performance asymmetric supercapacitor application [J].
Kuang, Liping ;
Ji, Fengzhen ;
Pan, Xuexue ;
Wang, Dongliang ;
Chen, Xinman ;
Jiang, Dan ;
Zhang, Yong ;
Ding, Baofu .
CHEMICAL ENGINEERING JOURNAL, 2017, 315 :491-499
[9]   One-dimension MnCo2O4 nanowire arrays for electrochemical energy storage [J].
Li, L. ;
Zhang, Y. Q. ;
Liu, X. Y. ;
Shi, S. J. ;
Zhao, X. Y. ;
Zhang, H. ;
Ge, X. ;
Cai, G. F. ;
Gu, C. D. ;
Wang, X. L. ;
Tu, J. P. .
ELECTROCHIMICA ACTA, 2014, 116 :467-474
[10]   Facile synthesis of porous MnCo2O4.5 hierarchical architectures for high- rate supercapacitors [J].
Li, Wenyao ;
Xu, Kaibing ;
Song, Guosheng ;
Zhou, Xiying ;
Zou, Rujia ;
Yang, Jianmao ;
Chen, Zhigang ;
Hu, Junqing .
CRYSTENGCOMM, 2014, 16 (12) :2335-2339