EERA-ASR: An Energy-Efficient Reconfigurable Architecture for Automatic Speech Recognition With Hybrid DNN and Approximate Computing

被引:33
作者
Liu, Bo [1 ]
Qin, Hai [1 ]
Gong, Yu [1 ]
Ge, Wei [1 ]
Xia, Mengwen [1 ]
Shi, Longxing [1 ]
机构
[1] Southeast Univ, Natl ASIC Syst Engn Technol Res Ctr, Nanjing 210096, Jiangsu, Peoples R China
来源
IEEE ACCESS | 2018年 / 6卷
基金
中国国家自然科学基金;
关键词
Hybrid deep neural network; binary weight network; reconfigurable architecture; approximate computing;
D O I
10.1109/ACCESS.2018.2870273
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
This paper proposes a hybrid deep neural network (DNN) for automatic speech recognition and an energy-efficient reconfigurable architecture with approximate computing for accelerating the DNN. To accelerate the hybrid DNN and reduce the energy consumption, we propose a digital-analog mixed reconfigurable architecture with approximate computing units, including a binary weight network accelerator with analog multi-chain delay-addition units for bit-wise approximate computing and a recurrent neural network accelerator with approximate multiplication units for different calculation accuracy requirements. Implemented under TSMC 28nm HPC+ process technology, the proposed architecture can achieve the energy efficiency of 163.8TOPS/W for 20 keywords recognition and 3.3TOPS/W for common speech recognition.
引用
收藏
页码:52227 / 52237
页数:11
相关论文
共 22 条
[1]   YodaNN: An Architecture for Ultralow Power Binary-Weight CNN Acceleration [J].
Andri, Renzo ;
Cavigelli, Lukas ;
Rossi, Davide ;
Benini, Luca .
IEEE TRANSACTIONS ON COMPUTER-AIDED DESIGN OF INTEGRATED CIRCUITS AND SYSTEMS, 2018, 37 (01) :48-60
[2]  
[Anonymous], 2018, SPEECH COMMANDS DATA
[3]  
[Anonymous], 2015, THCHS-30: A Free Chinese Speech Corpus
[4]   A 90 nm CMOS, 6 μW Power-Proportional Acoustic Sensing Frontend for Voice Activity Detection [J].
Badami, Komail M. H. ;
Lauwereins, Steven ;
Meert, Wannes ;
Verhelst, Marian .
IEEE JOURNAL OF SOLID-STATE CIRCUITS, 2016, 51 (01) :291-302
[5]  
Chanana Ashish, 2017, 2017 42nd International Conference on Infrared, Millimeter and Terahertz Waves (IRMMW-THz), DOI 10.1109/IRMMW-THz.2017.8067214
[6]   DianNao: A Small-Footprint High-Throughput Accelerator for Ubiquitous Machine-Learning [J].
Chen, Tianshi ;
Du, Zidong ;
Sun, Ninghui ;
Wang, Jia ;
Wu, Chengyong ;
Chen, Yunji ;
Temam, Olivier .
ACM SIGPLAN NOTICES, 2014, 49 (04) :269-283
[7]   DaDianNao: A Machine-Learning Supercomputer [J].
Chen, Yunji ;
Luo, Tao ;
Liu, Shaoli ;
Zhang, Shijin ;
He, Liqiang ;
Wang, Jia ;
Li, Ling ;
Chen, Tianshi ;
Xu, Zhiwei ;
Sun, Ninghui ;
Temam, Olivier .
2014 47TH ANNUAL IEEE/ACM INTERNATIONAL SYMPOSIUM ON MICROARCHITECTURE (MICRO), 2014, :609-622
[8]   Context-Dependent Pre-Trained Deep Neural Networks for Large-Vocabulary Speech Recognition [J].
Dahl, George E. ;
Yu, Dong ;
Deng, Li ;
Acero, Alex .
IEEE TRANSACTIONS ON AUDIO SPEECH AND LANGUAGE PROCESSING, 2012, 20 (01) :30-42
[9]   EIE: Efficient Inference Engine on Compressed Deep Neural Network [J].
Han, Song ;
Liu, Xingyu ;
Mao, Huizi ;
Pu, Jing ;
Pedram, Ardavan ;
Horowitz, Mark A. ;
Dally, William J. .
2016 ACM/IEEE 43RD ANNUAL INTERNATIONAL SYMPOSIUM ON COMPUTER ARCHITECTURE (ISCA), 2016, :243-254
[10]  
Horowitz M, 2014, ISSCC DIG TECH PAP I, V57, P10, DOI 10.1109/ISSCC.2014.6757323