Two-Dimensional Dirac Operators with Interactions on Unbounded Smooth Curves

被引:7
作者
Rabinovich, V [1 ]
机构
[1] Inst Politecn Nacl, ESIME Zacatenco, Mexico City 07738, DF, Mexico
关键词
SCHRODINGER-OPERATORS; ESSENTIAL SPECTRUM; SELF-ADJOINTNESS;
D O I
10.1134/S1061920821040105
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We consider the 2D Dirac operator with singular potentials D-A,D-Phi,D-Qsin u(x) = (D-A,D-Phi + Q(sin)) u(x), x is an element of R-2,R- (1) where D-a,D-Phi = Sigma(2)(j=1)sigma(j) (i partial derivative(xj) + a(j)) + sigma(3)m + Phi I-2; (2)here sigma(j), j = 1, 2, 3, are Pauli matrices, a = (a(1), a(2)) is the magnetic potential with a(j) is an element of L-infinity (R-2), Phi is an element of L-infinity(R) is the electrostatic potential, Q(sin) = Q delta(Gamma) is the singular potential with the strength matrix Q = (Q(ij))(i,j=1)(2), and delta(Gamma) is the delta-function with support on a C-2- curve Gamma, which is the common boundary of the domains Omega(+/-) subset of R-2. We associate with the formal Dirac operator D-alpha,D- Phi,D-Qsin an unbounded operator D-A,D- Phi,D-Q in L-2 (R-2, C-2) generated by D-a,D- Phi with a domain in H-1(Omega(+), C-2) circle plus H-1 (Omega(-), C-2) consisting of functions satisfying interaction conditions on Gamma. We study the self-adjointness of the operator D-A,D- Phi,D-Q and its essential spectrum for potentials and curves Gamma slowly oscillating at infinity. We also study the splitting of the interaction problems into two boundary problems describing the confinement of particles in the domains Omega +/-.
引用
收藏
页码:524 / 542
页数:19
相关论文
共 32 条
[1]  
Agranovich M.S., 1964, USPEKHI MAT NAUK, V0, P63
[2]  
Agranovich M.S., 2010, ELLIPTIC BOUNDARY PR
[3]  
[Anonymous], 2019, ARXIV190203901V1MATH
[4]  
[Anonymous], 2021, ARXIV210209988V1
[5]   Shell interactions for Dirac operators [J].
Arrizabalaga, Naiara ;
Mas, Albert ;
Vega, Luis .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2014, 102 (04) :617-639
[6]  
Behrndt J., 2019, Quantum Stud.: Math. Found
[7]   Two-dimensional Dirac operators with singular interactions supported on closed curves [J].
Behrndt, Jussi ;
Holzmann, Markus ;
Ourmieres-Bonafos, Thomas ;
Pankrashkin, Konstantin .
JOURNAL OF FUNCTIONAL ANALYSIS, 2020, 279 (08)
[8]   On the spectral properties of Dirac operators with electrostatic δ-shell interactions [J].
Behrndt, Jussi ;
Exner, Pavel ;
Holzmann, Markus ;
Lotoreichik, Vladimir .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2018, 111 :47-78
[9]   Spectral Gaps of Dirac Operators Describing Graphene Quantum Dots [J].
Benguria, Rafael D. ;
Fournais, Soren ;
Stockmeyer, Edgardo ;
Van den Bosch, Hanne .
MATHEMATICAL PHYSICS ANALYSIS AND GEOMETRY, 2017, 20 (02)
[10]   Self-Adjointness of Two-Dimensional Dirac Operators on Domains [J].
Benguria, Rafael D. ;
Fournais, Soren ;
Stockmeyer, Edgardo ;
Van Den Bosch, Hanne .
ANNALES HENRI POINCARE, 2017, 18 (04) :1371-1383