Ionic semi-interpenetrating networks as a new approach for highly conductive and stretchable polymer materials

被引:46
|
作者
Shaplov, Alexander S. [1 ]
Ponkratov, Denis O. [1 ]
Vlasov, Petr S. [2 ]
Lozinskaya, Elena I. [1 ]
Gumileva, Lyudmila V. [1 ]
Surcin, Christine [3 ]
Morcrette, Mathieu [3 ]
Armand, Michel [3 ]
Aubert, Pierre-Henri [4 ]
Vidal, Frederic [4 ]
Vygodskii, Yakov S. [1 ]
机构
[1] Russian Acad Sci INEOS RAS, AN Nesmeyanov Organoelement Cpds Inst, Moscow 119991, Russia
[2] St Petersburg State Univ, Dept Macromol Chem, St Petersburg 198504, Russia
[3] Univ Picardie Jules Verne, LRCS, UMR CNRS 6007, F-80039 Amiens, France
[4] Univ Cergy Pontoise, LPPI, F-95031 Cergy Pontoise, France
基金
俄罗斯基础研究基金会;
关键词
ELECTROCHEMICAL PROPERTIES; PHYSICOCHEMICAL PROPERTIES; POLY(IONIC LIQUID)S; SOLVENT-FREE; ELECTROLYTES; DENSITY; DESIGN; POLYETHYLENE; COMPOSITES; ELASTICITY;
D O I
10.1039/c4ta05833j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The synthesis and characterization of ionically conductive polymer films with high stretchability and good elasticity based on ionic semi-interpenetrating polymer networks (semi-IPNs) are discussed. Such innovative semi-IPN materials were prepared by radical copolymerization of an ionic monomer, namely, (N-[2-(2-(2-(methacryloyloxy)ethoxy)ethoxy)ethyl]-N-methylpyrrolidinium bis(fluorosulfonyl) imide) with poly(ethylene glycol)(di) methacrylates in the presence of the dissolved nitrile butadiene rubber, ionic liquid and lithium salt, using a simple one-step process. The suggested approach allows for simultaneous imparting of high ionic conductivity (1.3 x 10 (4) S cm (1) at 25 degrees C) and excellent mechanical properties (tensile strength up to 80 kPa, elongation up to 60%) to a single polymer material. Ionic semi-IPNs, possessing unusual "Emmentaler cheese" like structure, exhibit a wide electrochemical stability window (4.9 V) and acceptable time-stable interfacial properties in contact with metallic lithium. Preliminary battery tests have shown that Li/LiFePO4 solid-state cells are capable to deliver a 77 mA h g(-1) average specific capacity at 40 degrees C during 75 charge/discharge cycles.
引用
收藏
页码:2188 / 2198
页数:11
相关论文
共 50 条
  • [21] Sequential semi-interpenetrating polymer networks based on polyurethane and polystyrene
    Yu. P. Gomza
    V. V. Klepko
    Yu. S. Lipatov
    T. T. Alekseeva
    L. A. Sorochinskaya
    S. D. Nesin
    N. V. Yarovaya
    Polymer Science Series A, 2008, 50 : 956 - 964
  • [22] Synthesis and analysis of lactose polyurethanes and their semi-interpenetrating polymer networks
    Cheng, H. N.
    Biswas, Atanu
    Kim, Sanghoon
    Appell, Michael
    Furtado, Roselayne F.
    Rocha Bastos, Maria do Socorro
    Alves, Carlucio R.
    INTERNATIONAL JOURNAL OF POLYMER ANALYSIS AND CHARACTERIZATION, 2022, 27 (04) : 266 - 276
  • [23] SEMI-INTERPENETRATING POLYMER NETWORKS OF CHITOSAN AND POLY(ETHYLENE GLYCOL)
    Milosavljevic, Nedeljko B.
    Krusic, Melina T. Kalagasidis
    Filipovic, Jovanka M.
    HEMIJSKA INDUSTRIJA, 2008, 62 (06) : 345 - 351
  • [24] Immobilization of laccase in κ-carrageenan based semi-interpenetrating polymer networks
    Makas, Y. Gizem
    Kalkan, N. Ayca
    Aksoy, Serpil
    Altinok, Haydar
    Hasirci, Nesrin
    JOURNAL OF BIOTECHNOLOGY, 2010, 148 (04) : 216 - 220
  • [25] Sequential semi-interpenetrating polymer networks based on polyurethane and polystyrene
    Gomza, Yu. P.
    Klepko, V. V.
    Lipatov, Yu. S.
    Alekseeva, T. T.
    Sorochinskaya, L. A.
    Nesin, S. D.
    Yarovaya, N. V.
    POLYMER SCIENCE SERIES A, 2008, 50 (09) : 956 - 964
  • [26] Stretchable Zwitterionic Conductive Hydrogels with Semi-Interpenetrating Network Based on Polyaniline for Flexible Strain Sensors
    Chen, Xiaoling
    Hao, Weizhen
    Lu, Tiao
    Wang, Tian
    Shi, Caixin
    Zhao, Yansheng
    Liu, Yongmei
    MACROMOLECULAR CHEMISTRY AND PHYSICS, 2021, 222 (24)
  • [27] Preparation of semi-interpenetrating polymer networks composed of chitosan and poloxamer
    Kim, IY
    Yoo, MK
    Kim, BC
    Kim, SK
    Lee, HC
    Cho, CS
    INTERNATIONAL JOURNAL OF BIOLOGICAL MACROMOLECULES, 2006, 38 (01) : 51 - 58
  • [28] Semi-interpenetrating polymer networks (IPNs) for entrapment of glucose isomerase
    Demirel, G
    Özçetin, G
    Sahin, F
    Tümtürk, H
    Aksoy, S
    Hasirci, N
    REACTIVE & FUNCTIONAL POLYMERS, 2006, 66 (04): : 389 - 394
  • [29] An investigation of microstructural characteristics of semi-interpenetrating polymer networks.
    Eftekhari, A
    Pater, RH
    Singh, JJ
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 1996, 211 : 51 - NUCL
  • [30] Thermal characterizations of chitosan and polyacrylonitrile semi-interpenetrating polymer networks
    Kim, SJ
    Shin, SR
    Kim, SI
    HIGH PERFORMANCE POLYMERS, 2002, 14 (03) : 309 - 316