CuO as a reactive and reusable reagent for the hydrogenation of nitroarenes

被引:80
作者
Rajendran, K. [1 ]
Pandurangan, N. [1 ]
Vinod, C. P. [2 ]
Khan, Tuhin S. [3 ]
Gupta, Shelaka [4 ]
Haider, M. Ali [5 ]
Jagadeesan, D. [1 ]
机构
[1] Indian Inst Technol Palakkad, Discipline Chem, Palakkad 678557, Kerala, India
[2] CSIR Natl Chem Lab, Catalysis Div, Pune 411008, Maharashtra, India
[3] CSIR Indian Inst Petr, Light Stock Proc Div, Dehra Dun 248005, Uttarakhand, India
[4] Indian Inst Technol Hyderabad, Dept Chem Engn, Sangareddy 502285, Telangana, India
[5] Indian Inst Technol Delhi, Dept Chem Engn, Renewable Energy & Chem Lab, Delhi 110016, India
关键词
Nitroarene reduction; Hydrogenation; Reactive solids; CuO; Copper vacancy; Oxygen defects; SELECTIVE HYDROGENATION; CATALYTIC-REDUCTION; VIBRATIONAL-SPECTRA; NITROBENZENE; OXYGEN; NANOPARTICLES; ADSORPTION; METALS; CO;
D O I
10.1016/j.apcatb.2021.120417
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Copper oxide (CuO) is used as a reusable solid reagent for hydrogenation of nitroarenes to aminoarenes. The use of CuO resulted in 100 % conversion of 2.9 mmol of nitrobenzene to aniline in 45 s at room temperature using hydrazine hydrate as the reducing agent. During the reaction, CuO is converted to inactive metallic Cu which can be regenerated to active CuO by thermal oxidation. DFT simulations indicated facile formation of oxygen vacancies (EO,vac = -3.8 kJ/mol) on the surface of CuO (111) in reducing environment which is consistent with the XPS analysis. Oxygen vacancies facilitate stronger nitrobenzene binding (-148.5 kJ/mol) and reduced activation barrier (Ea = 36.4 kJ/mol) for N-O dissociation. Motivated from this mechanistic insight -NO2 groups in various nitroarenes were selectively hydrogenated to -NH2 groups using CuO.
引用
收藏
页数:10
相关论文
共 50 条
[11]   Commercially Available CuO Catalyzed Hydrogenation of Nitroarenes Using Ammonia Borane as a Hydrogen Source [J].
Du, Jialei ;
Chen, Jie ;
Xia, Hehuan ;
Zhao, Yiwei ;
Wang, Fang ;
Liu, Hong ;
Zhou, Weijia ;
Wang, Bin .
CHEMCATCHEM, 2020, 12 (09) :2426-2430
[12]   Systematic XPS studies of metal oxides, hydroxides and peroxides [J].
Dupin, JC ;
Gonbeau, D ;
Vinatier, P ;
Levasseur, A .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2000, 2 (06) :1319-1324
[13]   Synthesis and characterization of CuO nanowires by a simple wet chemical method [J].
Ethiraj, Anita Sagadevan ;
Kang, Dae Joon .
NANOSCALE RESEARCH LETTERS, 2012, 7
[14]   Promoted peroxymonosulfate activation into singlet oxygen over perovskite for ofloxacin degradation by controlling the oxygen defect concentration [J].
Gao, Panpan ;
Tian, Xike ;
Nie, Yulun ;
Yang, Chao ;
Zhou, Zhaoxin ;
Wang, Yanxin .
CHEMICAL ENGINEERING JOURNAL, 2019, 359 :828-839
[15]   Synthesis of Ethanol via Syngas on Cu/SiO2 Catalysts with Balanced Cu0-Cu+ Sites [J].
Gong, Jinlong ;
Yue, Hairong ;
Zhao, Yujun ;
Zhao, Shuo ;
Zhao, Li ;
Lv, Jing ;
Wang, Shengping ;
Ma, Xinbin .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2012, 134 (34) :13922-13925
[16]   Water: Friend or Foe in Catalytic Hydrogenation? A Case Study Using Copper Catalysts [J].
Govender, Alisa ;
Mahomed, Abdul S. ;
Friedrich, Holger B. .
CATALYSTS, 2018, 8 (10)
[17]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[18]   Synergistic Effect of Zn in a Bimetallic PdZn Catalyst: Elucidating the Role of Undercoordinated Sites in the Hydrodeoxygenation Reactions of Biorenewable Platforms [J].
Gupta, Shelaka ;
Khan, Tuhin Suvra ;
Saha, Basudeb ;
Haider, M. Ali .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (35) :16153-16163
[19]  
Haber F., 1898, Z ELEKTROCHEM, V4, P506, DOI DOI 10.1002/BBPC
[20]   Effects on Electronic Properties of Molecule Adsorption on CuO Surfaces and Nanowires [J].
Hu, Jun ;
Li, Dongdong ;
Lu, Jia G. ;
Wu, Ruqian .
JOURNAL OF PHYSICAL CHEMISTRY C, 2010, 114 (40) :17120-17126