Fatou's lemma for Sugeno integral

被引:5
作者
Agahi, Hamzeh [2 ,4 ]
Flores-Franulic, A. [1 ]
Vaezpour, S. Mansour [3 ]
机构
[1] Univ Tarapaca, Inst Alta Invest, Arica, Chile
[2] Amirkabir Univ Technol, Dept Stat, Fac Math & Comp Sci, Tehran 15914, Iran
[3] Amirkabir Univ Technol, Dept Math & Comp Sci, Tehran 15914, Iran
[4] Stat Res & Training Ctr, Tehran, Iran
关键词
Sugeno integral; Non-additive measure; Monotone function; Fatou's lemma; Applied statistics; FUZZY MEASURES; INEQUALITY; CONTINUITY; FUSION;
D O I
10.1016/j.amc.2010.12.079
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Fatou's lemma plays an important role in classical probability and measure theory. Nonadditive measure is a generalization of additive probability measure. Sugeno's integral is a useful tool in several theoretical and applied statistics which have been built on nonadditive measure. In this paper, a Fatou-type lemma for Sugeno integral is shown. The studied inequality is based on the classical Fatou lemma for Lebesgue integral. To illustrate the proposed inequalities some examples are given. (C) 2011 Elsevier Inc. All rights reserved.
引用
收藏
页码:6092 / 6096
页数:5
相关论文
共 33 条
[1]   Berwald type inequality for Sugeno integral [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Yao Ouyang ;
Pap, Endre ;
Strboja, Mirjana .
APPLIED MATHEMATICS AND COMPUTATION, 2010, 217 (08) :4100-4108
[2]   General Minkowski type inequalities for Sugeno integrals [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Yao Ouyang .
FUZZY SETS AND SYSTEMS, 2010, 161 (05) :708-715
[3]   New general extensions of Chebyshev type inequalities for Sugeno integrals [J].
Agahi, Hamzeh ;
Mesiar, Radko ;
Yao Ouyang .
INTERNATIONAL JOURNAL OF APPROXIMATE REASONING, 2009, 51 (01) :135-140
[4]  
[Anonymous], 1992, Fuzzy measure theory
[5]  
Benferhat S, 1998, FIFTEENTH NATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE (AAAI-98) AND TENTH CONFERENCE ON INNOVATIVE APPLICATIONS OF ARTIFICAL INTELLIGENCE (IAAI-98) - PROCEEDINGS, P121
[6]   Using fuzzy measures and habitual domains to analyze the public attitude and apply to the gas taxi policy [J].
Chen, TY ;
Chang, HL ;
Tzeng, GH .
EUROPEAN JOURNAL OF OPERATIONAL RESEARCH, 2002, 137 (01) :145-161
[7]   Nonlinear fusion for face recognition using fuzzy integral [J].
Chen, Xuerong ;
Jing, Zhongliang ;
Xiao, Gang .
COMMUNICATIONS IN NONLINEAR SCIENCE AND NUMERICAL SIMULATION, 2007, 12 (05) :823-831
[8]   The use of the discrete Sugeno integral in decision-making: A survey [J].
Dubois, D ;
Marichal, JL ;
Prade, H ;
Roubens, M ;
Sabbadin, R .
INTERNATIONAL JOURNAL OF UNCERTAINTY FUZZINESS AND KNOWLEDGE-BASED SYSTEMS, 2001, 9 (05) :539-561
[9]   A note on fuzzy integral inequality of Stolarsky type [J].
Flores-Franulic, A. ;
Roman-Flores, H. ;
Chalco-Cano, Y. .
APPLIED MATHEMATICS AND COMPUTATION, 2008, 196 (01) :55-59
[10]   Markov type inequalities for fuzzy integrals [J].
Flores-Franulic, A. ;
Roman-Flores, H. ;
Chalco-Cano, Y. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (01) :242-247