Tumor-Secreted Extracellular Vesicles Regulate T-Cell Costimulation and Can Be Manipulated To Induce Tumor-Specific T-Cell Responses

被引:70
作者
Zhao, Xianda [1 ]
Yuan, Ce [1 ]
Wangmo, Dechen [1 ]
Subramanian, Subbaya [1 ,2 ,3 ]
机构
[1] Univ Minnesota, Sch Med, Dept Surg, 11-212 Moos Tower,Mayo Mail Code 195,420 Delaware, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Mason Canc Ctr, Minneapolis, MN 55415 USA
[3] Univ Minnesota, Ctr Immunol, Minneapolis, MN 55415 USA
关键词
Colorectal Cancer; Extracellular Vesicles; T-Cell Costimulation; CD28; CD80; COLORECTAL-CANCER; DENDRITIC CELLS; PD-1; BLOCKADE; SOLID TUMORS; IMMUNE; TRAFFICKING; EXOSOMES; COLON;
D O I
10.1053/j.gastro.2021.04.036
中图分类号
R57 [消化系及腹部疾病];
学科分类号
摘要
BACKGROUND & AIMS: Colorectal cancer is a major cause of cancer-related deaths worldwide. Immune checkpoint blockade therapies are effective in 30%-60% of the microsatellite instable-high subtype. Unfortunately, most patients with colorectal cancer (>85%) have microsatellite stable tumors that do not respond. In this study, we aimed to decipher the underlying tumor-intrinsic mechanisms critical for improving immunotherapy in colorectal cancer. METHODS: We used human and mouse tumor samples, cell lines, human colorectal cancer organoids, and various syngeneic orthotopic mouse models of late-stage colorectal cancer to define the effects of tumor cell-secreted extracellular vesicles (EVs) on antitumor immune response. RESULTS: Our analyses of human colorectal cancer immune profiles and tumor-immune cell interactions showed that tumor-secreted EVs containing microRNA miR-424 suppressed the CD28-CD80/86 costimulatory pathway in tumor-infiltrating T cells and dendritic cells, leading to immune checkpoint blockade resistance. Modified tumor-secreted EVs with miR-424 knocked down enhanced T-cell-mediated antitumor immune response in colorectal cancer tumor models and increased the immune checkpoint blockade response. Intravenous injections of modified tumor-secreted EVs induced tumor antigen-specific immune responses and boosted the immune checkpoint blockade efficacy in colorectal cancer models that mimic aggressively progressing, late-stage disease. CONCLUSIONS: Collectively, we show a critical role for tumor-secreted EVs in antitumor immune regulation and immunotherapy response, which could be developed as a novel treatment for immune checkpoint blockade-resistant colorectal cancer.
引用
收藏
页码:560 / +
页数:26
相关论文
共 46 条
[1]   HTSeq-a Python']Python framework to work with high-throughput sequencing data [J].
Anders, Simon ;
Pyl, Paul Theodor ;
Huber, Wolfgang .
BIOINFORMATICS, 2015, 31 (02) :166-169
[2]   Immune and Stromal Classification of Colorectal Cancer Is Associated with Molecular Subtypes and Relevant for Precision Immunotherapy [J].
Becht, Etienne ;
de Reynies, Aurelien ;
Giraldo, Nicolas A. ;
Pilati, Camilla ;
Buttard, Benedicte ;
Lacroix, Laetitia ;
Selves, Janick ;
Sautes-Fridman, Catherine ;
Laurent-Puig, Pierre ;
Fridman, Wolf Herman .
CLINICAL CANCER RESEARCH, 2016, 22 (16) :4057-4066
[3]   Trimmomatic: a flexible trimmer for Illumina sequence data [J].
Bolger, Anthony M. ;
Lohse, Marc ;
Usadel, Bjoern .
BIOINFORMATICS, 2014, 30 (15) :2114-2120
[4]   A network-biology perspective of microRNA function and dysfunction in cancer [J].
Bracken, Cameron P. ;
Scott, Hamish S. ;
Goodall, Gregory J. .
NATURE REVIEWS GENETICS, 2016, 17 (12) :719-732
[5]   Exosomal PD-L1 contributes to immunosuppression and is associated with anti-PD-1 response [J].
Chen, Gang ;
Huang, Alexander C. ;
Zhang, Wei ;
Zhang, Gao ;
Wu, Min ;
Xu, Wei ;
Yu, Zili ;
Yang, Jiegang ;
Wang, Beike ;
Sun, Honghong ;
Xia, Houfu ;
Man, Qiwen ;
Zhong, Wenqun ;
Antelo, Leonardo F. ;
Wu, Bin ;
Xiong, Xuepeng ;
Liu, Xiaoming ;
Guan, Lei ;
Li, Ting ;
Liu, Shujing ;
Yang, Ruifeng ;
Lu, Youtao ;
Dong, Liyun ;
McGettigan, Suzanne ;
Somasundaram, Rajasekharan ;
Radhakrishnan, Ravi ;
Mills, Gordon ;
Lu, Yiling ;
Kim, Junhyong ;
Chen, Youhai H. ;
Dong, Haidong ;
Zhao, Yifang ;
Karakousis, Giorgos C. ;
Mitchell, Tara C. ;
Schuchter, Lynn M. ;
Herlyn, Meenhard ;
Wherry, E. John ;
Xu, Xiaowei ;
Guo, Wei .
NATURE, 2018, 560 (7718) :382-+
[6]   Exosomes Shuttle TREX1-Sensitive IFN-Stimulatory dsDNA from Irradiated Cancer Cells to DCs [J].
Diamond, Julie M. ;
Vanpouille-Box, Claire ;
Spada, Sheila ;
Rudqvist, Nils-Petter ;
Chapman, Jessica R. ;
Ueberheide, Beatrix M. ;
Pilones, Karsten A. ;
Sarfraz, Yasmeen ;
Formenti, Silvia C. ;
Demaria, Sandra .
CANCER IMMUNOLOGY RESEARCH, 2018, 6 (08) :910-920
[7]   Tumor suppression of novel anti-PD-1 antibodies mediated through CD28 costimulatory pathway [J].
Fenwick, Craig ;
Loredo-Varela, Juan-Luis ;
Joo, Victor ;
Pellaton, Celine ;
Farina, Alex ;
Rajah, Navina ;
Esteves-Leuenberger, Line ;
Decaillon, Thibaut ;
Suffiotti, Madeleine ;
Noto, Alessandra ;
Ohmiti, Khalid ;
Gottardo, Raphael ;
Weissenhorn, Winfried ;
Pantaleo, Giuseppe .
JOURNAL OF EXPERIMENTAL MEDICINE, 2019, 216 (07) :1525-1541
[8]   CD28-MEDIATED SIGNALING CO-STIMULATES MURINE T-CELLS AND PREVENTS INDUCTION OF ANERGY IN T-CELL CLONES [J].
HARDING, FA ;
MCARTHUR, JG ;
GROSS, JA ;
RAULET, DH ;
ALLISON, JP .
NATURE, 1992, 356 (6370) :607-609
[9]   Immune checkpoint blockade therapy for cancer: An overview of FDA-approved immune checkpoint inhibitors [J].
Hargadon, Kristian M. ;
Johnson, Coleman E. ;
Williams, Corey J. .
INTERNATIONAL IMMUNOPHARMACOLOGY, 2018, 62 :29-39
[10]   Glycan-Modified Apoptotic Melanoma-Derived Extracellular Vesicles as Antigen Source for Anti-Tumor Vaccination [J].
Horrevorts, Sophie K. ;
Stolk, Dorian A. ;
van de Ven, Rieneke ;
Hulst, Myrthe ;
van Het Hof, Bert ;
Duinkerken, Sanne ;
Heineke, Marieke H. ;
Ma, Wenbin ;
Dusoswa, Sophie A. ;
Nieuwland, Rienk ;
Garcia-Vallejo, Juan J. ;
van de Loosdrecht, Arjan A. ;
de Gruijl, Tanja D. ;
van Vliet, Sandra J. ;
van Kooyk, Yvette .
CANCERS, 2019, 11 (09)