Groundwater level forecasting using artificial neural networks

被引:464
|
作者
Daliakopoulos, IN
Coulibaly, P
Tsanis, IK [1 ]
机构
[1] Tech Univ Crete, Dept Environm Engn, Khania 73100, Greece
[2] McMaster Univ, Dept Civil Engn, Hamilton, ON, Canada
关键词
artificial neural networks; groundwater level forecasting; non-linear modeling; Messara Valley; aquifer overexploitation;
D O I
10.1016/j.jhydrol.2004.12.001
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A proper design of the architecture of Artificial Neural Network (ANN) models can provide a robust tool in water resources modeling and forecasting. The performance of different neural networks in a groundwater level forecasting is examined in order to identify an optimal ANN architecture that can simulate the decreasing trend of the groundwater level and provide acceptable predictions up to 18 months ahead. Messara Valley in Crete (Greece) was chosen as the study area as its groundwater resources have being overexploited during the last fifteen years and the groundwater level has been decreasing steadily. Seven different types of network architectures and training algorithms are investigated and compared in terms of model prediction efficiency and accuracy. The different experiment results show that accurate predictions can be achieved with a standard feedforward neural network trained with the Levenberg-Marquardt algorithm providing the best results for up to 18 months forecasts. (c) 2004 Published by Elsevier B.V.
引用
收藏
页码:229 / 240
页数:12
相关论文
共 50 条
  • [1] Forecasting groundwater level using artificial neural networks
    Sreekanth, P. D.
    Geethanjali, N.
    Sreedevi, P. D.
    Ahmed, Shakeel
    Kumar, N. Ravi
    Jayanthi, P. D. Kamala
    CURRENT SCIENCE, 2009, 96 (07): : 933 - 939
  • [2] Groundwater Level Predictions Using Artificial Neural Networks
    毛晓敏
    尚松浩
    刘翔
    TsinghuaScienceandTechnology, 2002, (06) : 574 - 579
  • [3] Using artificial neural network models for groundwater level forecasting and assessment of the relative impacts of influencing factors
    Lee, Sanghoon
    Lee, Kang-Kun
    Yoon, Heesung
    HYDROGEOLOGY JOURNAL, 2019, 27 (02) : 567 - 579
  • [4] Forecasting monsoon precipitation using artificial neural networks
    Wu, XD
    Cao, HX
    Flitman, A
    Wei, FY
    Feng, GL
    ADVANCES IN ATMOSPHERIC SCIENCES, 2001, 18 (05) : 950 - 958
  • [5] Electricity price forecasting using artificial neural networks
    Singhal, Deepak
    Swarup, K. S.
    INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2011, 33 (03) : 550 - 555
  • [6] Electricity Prices Forecasting using Artificial Neural Networks
    Alanis, Alma Y.
    IEEE LATIN AMERICA TRANSACTIONS, 2018, 16 (01) : 105 - 111
  • [7] Electricity price forecasting using artificial neural networks
    Villada, Fernando
    Cadavid, Diego Raul
    Molina, Juan David
    REVISTA FACULTAD DE INGENIERIA-UNIVERSIDAD DE ANTIOQUIA, 2008, (44): : 111 - 118
  • [8] Forecasting Monsoon Precipitation Using Artificial Neural Networks
    Xiaodan Wu
    Cao Hongxing
    Andrew Flitman
    Wei Fengying
    Feng Guolin
    Advances in Atmospheric Sciences, 2001, 18 : 950 - 958
  • [9] Solar Power Forecasting Using Artificial Neural Networks
    Abuella, Mohamed
    Chowdhury, Badrul
    2015 NORTH AMERICAN POWER SYMPOSIUM (NAPS), 2015,
  • [10] Forecasting Housing Prices by Using Artificial Neural Networks
    Yesil, Tolga
    Akyuz, Fatma
    Kose, Utku
    ARTIFICIAL INTELLIGENCE AND APPLIED MATHEMATICS IN ENGINEERING PROBLEMS, 2020, 43 : 621 - 632