Groundwater level forecasting using artificial neural networks

被引:469
作者
Daliakopoulos, IN
Coulibaly, P
Tsanis, IK [1 ]
机构
[1] Tech Univ Crete, Dept Environm Engn, Khania 73100, Greece
[2] McMaster Univ, Dept Civil Engn, Hamilton, ON, Canada
关键词
artificial neural networks; groundwater level forecasting; non-linear modeling; Messara Valley; aquifer overexploitation;
D O I
10.1016/j.jhydrol.2004.12.001
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
A proper design of the architecture of Artificial Neural Network (ANN) models can provide a robust tool in water resources modeling and forecasting. The performance of different neural networks in a groundwater level forecasting is examined in order to identify an optimal ANN architecture that can simulate the decreasing trend of the groundwater level and provide acceptable predictions up to 18 months ahead. Messara Valley in Crete (Greece) was chosen as the study area as its groundwater resources have being overexploited during the last fifteen years and the groundwater level has been decreasing steadily. Seven different types of network architectures and training algorithms are investigated and compared in terms of model prediction efficiency and accuracy. The different experiment results show that accurate predictions can be achieved with a standard feedforward neural network trained with the Levenberg-Marquardt algorithm providing the best results for up to 18 months forecasts. (c) 2004 Published by Elsevier B.V.
引用
收藏
页码:229 / 240
页数:12
相关论文
共 17 条
[1]   Impact of the length of observed records on the performance of ANN and of conceptual parsimonious rainfall-runoff forecasting models [J].
Anctil, F ;
Perrin, C ;
Andréassian, V .
ENVIRONMENTAL MODELLING & SOFTWARE, 2004, 19 (04) :357-368
[2]   Daily reservoir inflow forecasting using artificial neural networks with stopped training approach [J].
Coulibaly, P ;
Anctil, F ;
Bobée, B .
JOURNAL OF HYDROLOGY, 2000, 230 (3-4) :244-257
[3]   Artificial neural network modeling of water table depth fluctuations [J].
Coulibaly, P ;
Anctil, F ;
Aravena, R ;
Bobée, B .
WATER RESOURCES RESEARCH, 2001, 37 (04) :885-896
[4]   Improving extreme hydrologic events forecasting using a new criterion for artificial neural network selection [J].
Coulibaly, P ;
Bobée, B ;
Anctil, F .
HYDROLOGICAL PROCESSES, 2001, 15 (08) :1533-1536
[5]   Multivariate reservoir inflow forecasting using temporal neural networks [J].
Coulibaly, P ;
Anctil, F ;
Bobée, B .
JOURNAL OF HYDROLOGIC ENGINEERING, 2001, 6 (05) :367-376
[6]   Water resources in the desertification-threatened Messara Valley of Crete: estimation of the annual water budget using a rainfall-runoff model [J].
Croke, B ;
Cleridou, N ;
Kolovos, A ;
Vardavas, I ;
Papamastorakis, J .
ENVIRONMENTAL MODELLING & SOFTWARE, 2000, 15 (04) :387-402
[7]   FINDING STRUCTURE IN TIME [J].
ELMAN, JL .
COGNITIVE SCIENCE, 1990, 14 (02) :179-211
[8]   RAINFALL FORECASTING IN SPACE AND TIME USING A NEURAL NETWORK [J].
FRENCH, MN ;
KRAJEWSKI, WF ;
CUYKENDALL, RR .
JOURNAL OF HYDROLOGY, 1992, 137 (1-4) :1-31
[9]  
Govindaraju R.S., 2000, ARTIFICIAL NEURAL NE, V36
[10]  
Govindaraju RS, 2000, J HYDROL ENG, V5, P115