Structural environment dictates the biological significance of heme-responsive motifs and the role of Hsp90 in the activation of the heme activator protein Hap1

被引:32
作者
Lee, HC [1 ]
Hon, T [1 ]
Lan, CG [1 ]
Zhang, L [1 ]
机构
[1] NYU, Sch Med, Dept Biochem, New York, NY 10016 USA
关键词
D O I
10.1128/MCB.23.16.5857-5866.2003
中图分类号
Q5 [生物化学]; Q7 [分子生物学];
学科分类号
071010 ; 081704 ;
摘要
Heme-responsive motifs (HRMs) mediate heme regulation of diverse regulatory proteins. The heme activator protein Hap1 contains seven HRMs, but only one of them, HRM7, is essential for heme activation of Hap1. To better understand the molecular basis underlying the biological significance of HRMs, we examined the effects of various mutations of HRM7 on Hap1. We found that diverse mutations of HRM7 significantly diminished the extent of Hap1 activation by heme and moderately enhanced the interaction of Hap1 with Hsp90. Furthermore, deletions of nonregulatory sequences completely abolished heme activation of Hap1 and greatly enhanced the interaction of Hap1 with Hsp90. These results show that the biological functions of HRMs and Hsp90 are highly sensitive to structural changes. The unique role of HRM7 in heme activation stems from its specific structural environment, not its mere presence. Likewise, the role of Hsp90 in Hap1 activation is dictated by the conformational or structural state of Hap1, not by the mere strength of Hap1-Hsp90 interaction. It appears likely that HRM7 and Hsp90 act together to promote the Hap1 conformational changes that are necessary for Hap1 activation. Such fundamental mechanisms of HRM-Hsp90 cooperation may operate in diverse regulatory systems to mediate signal transduction.
引用
收藏
页码:5857 / 5866
页数:10
相关论文
共 54 条
[1]   Nrf2, a Cap'n'Collar transcription factor, regulates induction of the heme oxygenase-1 gene [J].
Alam, J ;
Stewart, D ;
Touchard, C ;
Boinapally, S ;
Choi, AMK ;
Cook, JL .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (37) :26071-26078
[2]   Multiple autophosphorylation is essential for the formation of the active and stable homodimer of heme-regulated eIF2α kinase [J].
Bauer, BN ;
Rafie-Kolpin, M ;
Lu, LR ;
Han, AP ;
Chen, JJ .
BIOCHEMISTRY, 2001, 40 (38) :11543-11551
[3]   Neuronal nitric-oxide synthase is regulated by the hsp90-based chaperone system in vivo [J].
Bender, AT ;
Silverstein, AM ;
Demady, DR ;
Kanelakis, KC ;
Noguchi, S ;
Pratt, WB ;
Osawa, Y .
JOURNAL OF BIOLOGICAL CHEMISTRY, 1999, 274 (03) :1472-1478
[4]  
Bock K. W., 1978, HEME HEMOPROTEINS
[5]   In vivo analysis of the Hsp90 cochaperone Sti1 (p60) [J].
Chang, HCJ ;
Nathan, DF ;
Lindquist, S .
MOLECULAR AND CELLULAR BIOLOGY, 1997, 17 (01) :318-325
[6]  
CHANG HCJ, 1994, J BIOL CHEM, V269, P24983
[7]  
CHEN K, 1994, ELECTRON T NUMER ANA, V2, P76
[8]  
CHEN YS, 1995, IEEE SIGNAL PROC LET, V2, P105, DOI 10.1109/97.388909
[9]   CYP1 (HAP1) REGULATOR OF OXYGEN-DEPENDENT GENE-EXPRESSION IN YEAST .1. OVERALL ORGANIZATION OF THE PROTEIN-SEQUENCE DISPLAYS SEVERAL NOVEL STRUCTURAL DOMAINS [J].
CREUSOT, F ;
VERDIERE, J ;
GAISNE, M ;
SLONIMSKI, PP .
JOURNAL OF MOLECULAR BIOLOGY, 1988, 204 (02) :263-276
[10]   EVIDENCE FOR AN INTERACTION BETWEEN THE CYP1(HAP1) ACTIVATOR AND A CELLULAR FACTOR DURING HEME-DEPENDENT TRANSCRIPTIONAL REGULATION IN THE YEAST SACCHAROMYCES-CEREVISIAE [J].
FYTLOVICH, S ;
GERVAIS, M ;
AGRIMONTI, C ;
GUIARD, B .
EMBO JOURNAL, 1993, 12 (03) :1209-1218