User pairing and power allocation for non-orthogonal multiple access: Capacity maximization under data reliability constraints

被引:24
作者
Shahab, Muhammad Basit [1 ]
Shin, Soo Young [1 ]
机构
[1] Kumoh Natl Inst Technol, Dept IT Convergence Engn, Gumi 39177, South Korea
基金
新加坡国家研究基金会;
关键词
Non-orthogonal multiple access (NOMA); User pairing (UP); Power allocation (PA); Capacity; Bit error rate (BER); Successive interference cancellation (SIC); 5G SYSTEMS; PERFORMANCE ANALYSIS; UNPAIRED USERS; CHALLENGES; SPECTRUM; UTILIZE; SCHEME; NOMA;
D O I
10.1016/j.phycom.2018.05.010
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This paper comprehensively investigates the dynamics of user pairing and power allocation (UPPA) in non-orthogonal multiple access (NOMA). The focal point of this work is to explore the effects of UPPA on capacity and bit error rate (BER) of NOMA users, thereby understanding the tradeoffs involved when UPPA is performed. These tradeoffs facilitate the design of UPPA strategies to maximize system capacity and satisfy individual target data rates of users without exceeding their allowed BER upper bounds to meet the strict data reliability constraints. Data reliability is critical in NOMA and serves as bottleneck to its manifold capacity gains, as NOMA users are prone to significant interference. The existing UPPA strategies focusing on capacity maximization or user fairness completely neglect this extremely critical tradeoff. This paper provides extensive analysis and results of UPPA considering individual/sum capacity and BER of users. Results are summarized in the form of look-up tables, which facilitate swift selection of user pairs and power allocation factors. The process of performing UPPA by using the developed look up tables, such that both capacity and data reliability goals can be simultaneously achieved, is comprehensively explained in the end. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:132 / 144
页数:13
相关论文
共 42 条
  • [1] [Anonymous], 2015, NGMN 5G White Paper
  • [2] [Anonymous], CISC VIS NETW IND GL
  • [3] Benjebbour A, 2013, IEEE GLOBE WORK, P66, DOI 10.1109/GLOCOMW.2013.6824963
  • [6] Dai LL, 2015, IEEE COMMUN MAG, V53, P74, DOI 10.1109/MCOM.2015.7263349
  • [7] A Survey on Non-Orthogonal Multiple Access for 5G Networks: Research Challenges and Future Trends
    Ding, Zhiguo
    Lei, Xianfu
    Karagiannidis, George K.
    Schober, Robert
    Yuan, Jinhong
    Bhargava, Vijay K.
    [J]. IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, 2017, 35 (10) : 2181 - 2195
  • [8] Application of Non-Orthogonal Multiple Access in LTE and 5G Networks
    Ding, Zhiguo
    Liu, Yuanwei
    Choi, Jinho
    Sun, Qi
    Elkashlan, Maged
    I, Chih-Lin
    Poor, H. Vincent
    [J]. IEEE COMMUNICATIONS MAGAZINE, 2017, 55 (02) : 185 - 191
  • [9] Impact of User Pairing on 5G Nonorthogonal Multiple-Access Downlink Transmissions
    Ding, Zhiguo
    Fan, Pingzhi
    Poor, H. Vincent
    [J]. IEEE TRANSACTIONS ON VEHICULAR TECHNOLOGY, 2016, 65 (08) : 6010 - 6023
  • [10] On the Performance of Non-Orthogonal Multiple Access in 5G Systems with Randomly Deployed Users
    Ding, Zhiguo
    Yang, Zheng
    Fan, Pingzhi
    Poor, H. Vincent
    [J]. IEEE SIGNAL PROCESSING LETTERS, 2014, 21 (12) : 1501 - 1505