Almost Global Existence for the Prandtl Boundary Layer Equations

被引:80
作者
Ignatova, Mihaela [1 ]
Vicol, Vlad [1 ]
机构
[1] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
基金
美国国家科学基金会;
关键词
HYDROSTATIC EULER EQUATIONS; ANALYTIC SOLUTIONS; LOCAL EXISTENCE; WELL-POSEDNESS; ILL-POSEDNESS; HALF-SPACE; DOMAIN; UNIQUENESS; LIMIT;
D O I
10.1007/s00205-015-0942-2
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider the Prandtl boundary layer equations on the half plane, with initial datum that lies in a weighted H-1 space with respect to the normal variable, and is real-analytic with respect to the tangential variable. The boundary trace of the horizontal Euler flow is taken to be a constant. We prove that if the Prandtl datum lies within epsilon of a stable profile, then the unique solution of the Cauchy problem can be extended at least up to time T-epsilon >= exp(epsilon(-1)/log(epsilon(-1))).
引用
收藏
页码:809 / 848
页数:40
相关论文
共 42 条
[1]  
Alexandre R., 2014, J AM MATH SOC
[2]  
[Anonymous], ARXIV14116984
[3]  
[Anonymous], 2004, Hydrodynamic Stability
[4]  
[Anonymous], COMMUN PURE APPL MAT
[5]  
Caflisch RE, 2000, Z ANGEW MATH MECH, V80, P733, DOI 10.1002/1521-4001(200011)80:11/12<733::AID-ZAMM733>3.0.CO
[6]  
2-L
[7]   Existence and uniqueness for the Prandtl equations [J].
Cannone, M ;
Lombardo, MC ;
Sammartino, M .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2001, 332 (03) :277-282
[8]   Global regularity for some classes of large solutions to the Navier-Stokes equations [J].
Chemin, Jean-Yves ;
Gallagher, Isabelle ;
Paicu, Marius .
ANNALS OF MATHEMATICS, 2011, 173 (02) :983-1012
[9]  
Constantin P., 2014, P AM MATH SOC
[10]   Singularity formation for Prandtl's equations [J].
Gargano, F. ;
Sammartino, M. ;
Sciacca, V. .
PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (19) :1975-1991