In situ XRD study of the phase transition of nanocrystalline maghemite (γ-Fe2O3) to hematite (α-Fe2O3)

被引:110
|
作者
Schimanke, G [1 ]
Martin, M [1 ]
机构
[1] Darmstadt Univ Technol, Inst Chem Phys, D-64287 Darmstadt, Germany
关键词
in situ XRD; nanocrystals; XANES; TEM; kinetics; maghemite; hematite; iron;
D O I
10.1016/S0167-2738(00)00593-2
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Nanocrystalline iron oxide was produced by inert gas condensation (IGC). The phase and crystal size analysis were done by X-ray powder diffraction (XRD), X-ray absorption spectroscopy (XAS) and transmission electron microscopy (TEM). All three methods show that the only oxide that was formed was maghemite. The crystal sizes vary for different samples from 9 nm to 16 nm. The kinetics of the phase transition from maghemite to hematite was observed by in situ XRD measurements at temperatures around 300 degreesC. It is possible to describe the transition by first order kinetics with an activation energy which increases with increasing crystal size. The sizes of the produced hematite crystals were above 35 nm, but growing of the maghemite crystals was not observed. These results can be explained qualitatively under the aspect of the Gibbs energies. (C) 2000 Elsevier Science B.V. All rights reserved.
引用
收藏
页码:1235 / 1240
页数:6
相关论文
共 50 条
  • [31] Monoclinic deformation of the crystal lattice of hematite α-Fe2O3
    Przenioslo, Radoslaw
    Sosnowska, Izabela
    Stekiel, Michal
    Wardecki, Dariusz
    Fitch, Andrew
    Jasinski, Jacek B.
    PHYSICA B-CONDENSED MATTER, 2014, 449 : 72 - 76
  • [32] Synthesis and characterization of Fe and Fe2O3 nanoparticles
    Ponnaian, Peula Kumari
    Oommen, Rachel
    Kannaiyan, Senthil Kumaran Chinna
    Mariyappan, Thambidurai
    Natarajan, Muthukumarasamy
    Santhanam, Agilan
    ADVANCES IN NANOSCIENCE AND NANOTECHNOLOGY, 2013, 678 : 46 - +
  • [33] Size and Size Distribution Control of γ-Fe2O3 Nanocrystallites: An in Situ Study
    Andersen, Henrik L.
    Jensen, Kirsten M. O.
    Tyrsted, Christoffer
    Bojesen, Espen D.
    Christensen, Mogens
    CRYSTAL GROWTH & DESIGN, 2014, 14 (03) : 1307 - 1313
  • [34] Effect of Fe2O3 precursors on physicochemical and catalytic properties of CuO/Fe2O3 system
    Amin, Nabil H.
    Ali, Laila I.
    El-Molla, Sahar A.
    Ebrahim, Anwer A.
    Mahmoud, Hala R.
    ARABIAN JOURNAL OF CHEMISTRY, 2016, 9 : S678 - S684
  • [35] Peculiar porous α-Fe2O3, γ-Fe2O3 and Fe3O4 nanospheres: Facile synthesis and electromagnetic properties
    Wu, Hongjing
    Wu, Guanglei
    Wang, Liuding
    POWDER TECHNOLOGY, 2015, 269 : 443 - 451
  • [36] The effect of FeMn and FeB additive on hematite (α-Fe2O3) and their characterization
    Ginting, M.
    Pane, J.
    Simbolon, D. H.
    Simbolon, S.
    Yunus, M.
    Kurniawan, C.
    Sebayang, P.
    INTERNATIONAL SYMPOSIUM ON FRONTIER OF APPLIED PHYSICS, 2018, 2019, 1191
  • [37] Photocatalytic performance and magnetic separation of TiO2-functionalized γ-Fe2O3, Fe, and Fe/Fe2O3 magnetic particles
    Chen, Zheng
    Ma, Yongqing
    Geng, Bingqian
    Wang, Min
    Sun, Xiao
    JOURNAL OF ALLOYS AND COMPOUNDS, 2017, 700 : 113 - 121
  • [38] Synthesis and properties of iridium-doped hematite (α-Fe2O3)
    Krehula, Stjepko
    Stefanic, Goran
    Zadro, Kreso
    Krehula, Ljerka Kratofil
    Marcius, Marijan
    Music, Svetozar
    JOURNAL OF ALLOYS AND COMPOUNDS, 2012, 545 : 200 - 209
  • [39] Nanopores in hematite (α-Fe2O3) nanocrystals observed by electron tomography
    Echigo, Takuya
    Monsegue, Niven
    Aruguete, Deborah M.
    Murayama, Mitsuhiro
    Hochella, Michael F., Jr.
    AMERICAN MINERALOGIST, 2013, 98 (01) : 154 - 162
  • [40] Hydrothermal extraction of α-Fe2O3 nanocrystallite from hematite ore
    Khalil, N. M.
    Wahsh, M. M. S.
    Saad, Elhadi E.
    JOURNAL OF INDUSTRIAL AND ENGINEERING CHEMISTRY, 2015, 21 : 1214 - 1218