Algebraic approach to the Tavis-Cummings problem

被引:30
作者
Vadeiko, IP
Miroshnichenko, GP
Rybin, AV
Timonen, J
机构
[1] St Petersburg Inst Fine Mech & Opt, Dept Math, St Petersburg 197101, Russia
[2] Univ Jyvaskyla, Dept Phys, FIN-40351 Jyvaskyla, Finland
来源
PHYSICAL REVIEW A | 2003年 / 67卷 / 05期
关键词
D O I
10.1103/PhysRevA.67.053808
中图分类号
O43 [光学];
学科分类号
070207 ; 0803 ;
摘要
An algebraic method is introduced for an analytical solution of the eigenvalue problem of the Tavis-Cummings Hamiltonian, based on polynomially deformed su(2), i.e., su(n)(2) algebras. In this method the eigenvalue problem is solved in terms of a specific perturbation theory, developed here up to third order. Generalization to the N-atom case of the Rabi frequency and dressed states is also provided. A remarkable enhancement of spontaneous emission of N atoms in a resonator is found to result from collective effects.
引用
收藏
页数:12
相关论文
共 40 条
[1]   Exact solution of generalized Tavis-Cummings models in quantum optics [J].
Bogoliubov, NM ;
Bullough, RK ;
Timonen, J .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1996, 29 (19) :6305-6312
[2]   GENERALIZED DEFORMED SU(2) ALGEBRA [J].
BONATSOS, D ;
DASKALOYANNIS, C ;
KOLOKOTRONIS, P .
JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1993, 26 (17) :L871-L876
[3]   UNIFICATION OF JAYNES-CUMMINGS MODELS [J].
BONATSOS, D ;
DASKALOYANNIS, C ;
LALAZISSIS, GA .
PHYSICAL REVIEW A, 1993, 47 (04) :3448-3451
[4]  
Bonatsos D., HEPTH9402099
[5]   GENERALIZED BOSE OPERATORS IN FOCK SPACE OF A SINGLE BOSE OPERATOR [J].
BRANDT, RA ;
GREENBERG, OW .
JOURNAL OF MATHEMATICAL PHYSICS, 1969, 10 (07) :1168-+
[6]   Coherent states for quantum systems with a trilinear boson Hamiltonian [J].
Brif, C .
PHYSICAL REVIEW A, 1996, 54 (06) :5253-5261
[7]   THEORY OF A QUANTUM ANHARMONIC-OSCILLATOR [J].
CARUSOTTO, S .
PHYSICAL REVIEW A, 1988, 38 (07) :3249-3257
[8]   DYNAMICS OF PROCESSES WITH A TRILINEAR BOSON HAMILTONIAN [J].
CARUSOTTO, S .
PHYSICAL REVIEW A, 1989, 40 (04) :1848-1857
[9]   GENERAL-PROPERTIES OF QUANTUM OPTICAL-SYSTEMS IN A STRONG-FIELD LIMIT [J].
CHUMAKOV, SM ;
KLIMOV, AB ;
SANCHEZMONDRAGON, JJ .
PHYSICAL REVIEW A, 1994, 49 (06) :4972-4978
[10]   Comprehensive theory of the relative phase in atom-field interactions -: art. no. 063801 [J].
Delgado, J ;
Yustas, EC ;
Sánchez-Soto, LL ;
Klimov, AB .
PHYSICAL REVIEW A, 2001, 63 (06) :10-063801