Interlaminar reinforcement of glass fiber/epoxy composites with graphene nanoplatelets

被引:134
作者
Kamar, Nicholas T. [1 ,2 ]
Hossain, Mohammad Mynul [1 ]
Khomenko, Anton [1 ]
Haq, Mahmood [1 ,3 ]
Drzal, Lawrence T. [1 ,2 ]
Loos, Alfred [1 ]
机构
[1] Michigan State Univ, Coll Engn, Composite Vehicle Res Ctr, Lansing, MI 48910 USA
[2] Michigan State Univ, Coll Engn, Composite Mat & Struct Ctr, E Lansing, MI 48824 USA
[3] Michigan State Univ, Dept Civil & Environm Engn, E Lansing, MI 48824 USA
关键词
Nanostructures; Fracture toughness; Mechanical testing; Resin transfer molding (RTM); MECHANICAL-PROPERTIES; CARBON NANOTUBES; EPOXY-RESINS; NANOCOMPOSITES; FRACTURE; MATRIX; DISPERSION; BEHAVIOR;
D O I
10.1016/j.compositesa.2014.12.010
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
This work investigated the ability of graphene nanoplatelets (GnPs) to improve the interlaminar mechanical properties of glass-reinforced multilayer composites. A novel method was developed for the inclusion of GnPs into the interlaminar regions of plain-weave, glass fabric fiber-reinforced/epoxy polymer composites processed with vacuum assisted resin transfer molding. Flexural tests showed a 29% improvement in flexural strength with the addition of only 0.25 wt% GnP. At the same concentration, mode-I fracture toughness testing revealed a 25% improvement. Additionally, low-velocity drop weight impact testing showed improved energy absorption capability with increasing concentration of GnPs. Ultrasonic C-scans and dye penetration inspection of the impact- and back-sides of the specimens qualitatively support these results. Finally, the impact damage area was quantified from the C-scan data. These results showed that the impact-side damage area decreased with increasing concentration of GnP, while the back-side damage area increased. (C) 2014 Elsevier Ltd. All rights reserved.
引用
收藏
页码:82 / 92
页数:11
相关论文
共 31 条
[1]  
[Anonymous], MAT SCI PROD
[2]   A study on nanostructured laminated plates behavior under low-velocity impact loadings [J].
Avila, Antonio F. ;
Soares, Marcelo I. ;
Neto, Almir Silva .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2007, 34 (01) :28-41
[3]   INTERLAMINAR FRACTURE OF ORGANIC-MATRIX, WOVEN REINFORCEMENT COMPOSITES [J].
BASCOM, WD ;
BITNER, JL ;
MOULTON, RJ ;
SIEBERT, AR .
COMPOSITES, 1980, 11 (01) :9-18
[4]   Low velocity impact tests of laminate glass-fiber-epoxy matrix composite material plates [J].
Belingardi, G ;
Vadori, R .
INTERNATIONAL JOURNAL OF IMPACT ENGINEERING, 2002, 27 (02) :213-229
[5]   PHASE-SEPARATION IN EPOXY-RESINS CONTAINING POLYETHERSULFONE [J].
BUCKNALL, CB ;
PARTRIDGE, IK .
POLYMER, 1983, 24 (05) :639-644
[6]   Fracture toughness and failure mechanism of graphene based epoxy composites [J].
Chandrasekaran, Swetha ;
Sato, Narumichi ;
Toelle, Folke ;
Muelhaupt, Rolf ;
Fiedler, Bodo ;
Schulte, Karl .
COMPOSITES SCIENCE AND TECHNOLOGY, 2014, 97 :90-99
[7]   Preparation and characterization of graphite nano-platelet (GNP)/epoxy nano-composite: Mechanical, electrical and thermal properties [J].
Chandrasekaran, Swetha ;
Seidel, Christian ;
Schulte, Karl .
EUROPEAN POLYMER JOURNAL, 2013, 49 (12) :3878-3888
[8]   Size and synergy effects of nanofiller hybrids including graphene nanoplatelets and carbon nanotubes in mechanical properties of epoxy composites [J].
Chatterjee, S. ;
Nafezarefi, F. ;
Tai, N. H. ;
Schlagenhauf, L. ;
Nueesch, F. A. ;
Chu, B. T. T. .
CARBON, 2012, 50 (15) :5380-5386
[9]   Covalent chemistry on graphene [J].
Chua, Chun Kiang ;
Pumera, Martin .
CHEMICAL SOCIETY REVIEWS, 2013, 42 (08) :3222-3233
[10]  
EPA U, 2012, GHG EM STAND LIGHT D