Analytical homogenization modeling and computational simulation of intergranular fracture in polycrystals

被引:8
作者
Benabou, L. [1 ]
Sun, Z. [2 ]
机构
[1] Univ Versailles St Quentin En Yvelines, LISV, F-78035 Versailles, France
[2] Univ Technol Troyes, LASMIS, F-10004 Troyes, France
关键词
Intergranular fracture; Mean-field modeling; Imperfect interfaces; Full-field simulation; Finite element method; MORI-TANAKA METHOD; DYNAMIC EMBRITTLEMENT; INTERMEDIATE TEMPERATURE; MECHANICAL-BEHAVIOR; COMPOSITE-MATERIALS; AUTOMATED-ANALYSIS; MICRO STRUCTURES; INCLUSION; FRAMEWORK; ENERGY;
D O I
10.1007/s10704-015-0018-1
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Failure at grain boundaries has a critical effect on the overall fracture behaviour of polycrystalline aggregates, as is the case in many metals. In the case of dynamic embrittlement, segregation of impurities occurs at grain boundaries, lowering their cohesive strength. The material response is then dominantly determined by grain boundary properties. The self-consistent scheme is extended to account for grain boundary decohesion by using a cohesive law to represent crack initiation and propagation. After introducing the imperfect interface conditions into the Eshelby's equivalent inclusion solution, the effective tensile response and brittle intergranular fracture of a Cu-Ni-Si alloy is predicted. The proposed analytical model allows for the identification of parameters for both crystal plasticity and cohesive constitutive laws, from a single macroscopic tensile curve. Afterwards, multiscale computations of artificial microstructures are done using the analytically calibrated values of material parameters. Comparison of the results with experimental data shows a satisfactory agreement.
引用
收藏
页码:59 / 75
页数:17
相关论文
共 39 条
[11]   A framework for automated analysis and simulation of 3D polycrystalline micro structures. Part 1: Statistical characterization [J].
Groeber, Michael ;
Ghosh, Somnath ;
Uchic, Michael D. ;
Dimiduk, Dennis M. .
ACTA MATERIALIA, 2008, 56 (06) :1257-1273
[12]   A framework for automated analysis and simulation of 3D polycrystalline micro structures. Part 2: Synthetic structure generation [J].
Groeber, Michael ;
Ghosh, Somnath ;
Uchic, Michael D. ;
Dimiduk, Dennis M. .
ACTA MATERIALIA, 2008, 56 (06) :1274-1287
[13]   THE SPHERICAL INCLUSION WITH IMPERFECT INTERFACE [J].
HASHIN, Z .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1991, 58 (02) :444-449
[16]   BERECHNUNG DER ELASTISCHEN KONSTANTEN DES VIELKRISTALLS AUS DEN KONSTANTEN DES EINKRISTALLS [J].
KRONER, E .
ZEITSCHRIFT FUR PHYSIK, 1958, 151 (04) :504-518
[17]   ON THE PLASTIC DEFORMATION OF POLYCRYSTALS [J].
KRONER, E .
ACTA METALLURGICA, 1961, 9 (02) :155-161
[18]   Micromechanics-based elastic damage modeling of particulate composites with weakened interfaces [J].
Lee, H. K. ;
Pyo, S. H. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2007, 44 (25-26) :8390-8406
[19]   SINGLE-CRYSTAL MODELING FOR STRUCTURAL CALCULATIONS .2. FINITE-ELEMENT IMPLEMENTATION [J].
MERIC, L ;
CAILLETAUD, G .
JOURNAL OF ENGINEERING MATERIALS AND TECHNOLOGY-TRANSACTIONS OF THE ASME, 1991, 113 (01) :171-182
[20]   Dynamic embrittlement in an age-hardenable copper-chromium alloy [J].
Misra, RDK ;
Prasad, VS ;
Rao, PR .
SCRIPTA MATERIALIA, 1996, 35 (01) :129-133