WELL-POSEDNESS AND FINITE VOLUME APPROXIMATIONS OF THE LWR TRAFFIC FLOW MODEL WITH NON-LOCAL VELOCITY

被引:64
作者
Goatin, Paola [1 ]
Scialanga, Sheila [1 ]
机构
[1] Inria Sophia Antipolis Mediterranee, 2004 Route Lucioles,BP 93, F-06902 Sophia Antipolis, France
关键词
Scalar conservation laws; non-local flux; macroscopic traffic flow models; finite volume schemes; CONSERVATION-LAWS; SIMULATION; SCHEMES; SYSTEMS; WAVES;
D O I
10.3934/nhm.2016.11.107
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We consider an extension of the traffic flow model proposed by Lighthill, Whitham and Richards, in which the mean velocity depends on a weighted mean of the downstream traffic density. We prove well-posedness and a regularity result for entropy weak solutions of the corresponding Cauchy problem, and use a finite volume central scheme to compute approximate solutions. We perform numerical tests to illustrate the theoretical results and to investigate the limit as the convolution kernel tends to a Dirac delta function.
引用
收藏
页码:107 / 121
页数:15
相关论文
共 25 条
[1]   NONLOCAL SYSTEMS OF CONSERVATION LAWS IN SEVERAL SPACE DIMENSIONS [J].
Aggarwal, Aekta ;
Colombo, Rinaldo M. ;
Goatin, Paola .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 2015, 53 (02) :963-983
[2]   AN INTEGRO-DIFFERENTIAL CONSERVATION LAW ARISING IN A MODEL OF GRANULAR FLOW [J].
Amadori, Debora ;
Shen, Wen .
JOURNAL OF HYPERBOLIC DIFFERENTIAL EQUATIONS, 2012, 9 (01) :105-131
[3]   ON THE NUMERICAL INTEGRATION OF SCALAR NONLOCAL CONSERVATION LAWS [J].
Amorim, Paulo ;
Colombo, Rinaldo M. ;
Teixeira, Andreia .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 2015, 49 (01) :19-37
[4]  
[Anonymous], 2013, Traffic flow dynamics: Data, models and simulation
[5]   On nonlocal conservation laws modelling sedimentation [J].
Betancourt, F. ;
Buerger, R. ;
Karlsen, K. H. ;
Tory, E. M. .
NONLINEARITY, 2011, 24 (03) :855-885
[6]  
Blandin S., 2015, NUMER MATH, P1
[7]   A CLASS OF NONLOCAL MODELS FOR PEDESTRIAN TRAFFIC [J].
Colombo, Rinaldo M. ;
Garavello, Mauro ;
Lecureux-Mercier, Magali .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2012, 22 (04)
[8]   NONLOCAL CROWD DYNAMICS MODELS FOR SEVERAL POPULATIONS [J].
Colombo, Rinaldo M. ;
Lecureux-Mercier, Magali .
ACTA MATHEMATICA SCIENTIA, 2012, 32 (01) :177-196
[9]   CONTROL OF THE CONTINUITY EQUATION WITH A NON LOCAL FLOW [J].
Colombo, Rinaldo M. ;
Herty, Michael ;
Mercier, Magali .
ESAIM-CONTROL OPTIMISATION AND CALCULUS OF VARIATIONS, 2011, 17 (02) :353-379
[10]   Existence and uniqueness of measure solutions for a system of continuity equations with non-local flow [J].
Crippa, Gianluca ;
Lecureux-Mercier, Magali .
NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2013, 20 (03) :523-537