Longitudinal bulk strain solitons in a hyperelastic rod with quadratic and Cubic nonlinearities

被引:10
作者
Garbuzov, F. E. [1 ]
Beltukov, Y. M. [1 ]
Khusnutdinova, K. R. [2 ]
机构
[1] Ioffe Inst, St Petersburg, Russia
[2] Loughborough Univ, Dept Math Sci, Loughborough, Leics, England
基金
俄罗斯科学基金会;
关键词
hyperelastic rod; Korteweg-de Vries-type equation; near-identity transformation; soliton; INTERNAL SOLITARY WAVES; MODELS; FLUID; FLOW;
D O I
10.1134/S0040577920030046
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We study long nonlinear longitudinal bulk strain waves in a hyperelastic rod of circular cross section in the framework of general weakly nonlinear elasticity leading to a model with quadratic and cubic nonlinearities. We systematically derive extended equations of the Boussinesq and Korteweg-de Vries types and construct a family of approximate weakly nonlinear soliton solutions using near-identity transformations. We compare these solutions with the results of direct numerical simulations of the original nonlinear problem formulation, showing excellent agreement in the range of their asymptotic validity (waves of small amplitude) and extending their relevance beyond it (to waves of moderate amplitude) as a very good initial condition. In particular, we can observe a stably propagating "table-top" soliton.
引用
收藏
页码:319 / 333
页数:15
相关论文
共 57 条
[1]  
Ablowitzand M J, 1981, SOLITONS INVERSE SCA
[2]   LONG NON-LINEAR WAVES IN FLUID FLOWS [J].
BENNEY, DJ .
JOURNAL OF MATHEMATICS AND PHYSICS, 1966, 45 (01) :52-&
[3]  
CANUTO C.G., 2007, Spectral Methods, DOI DOI 10.1016/J.IJHEATMASSTRANSFER.2010.06.029
[4]  
CLARKSON PA, 1986, STUD APPL MATH, V75, P95
[5]   Model equations for nonlinear dispersive waves in a compressible Mooney-Rivlin rod [J].
Dai, HH .
ACTA MECHANICA, 1998, 127 (1-4) :193-207
[6]   Solitary shock waves and other travelling waves in a general compressible hyperelastic rod [J].
Dai, HH ;
Huo, Y .
PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2000, 456 (1994) :331-363
[7]  
Daiand H-H, 2006, P ROY SOC LOND A MAT, V462, P75, DOI [10.1098/rspa.2005.1557, DOI 10.1098/RSPA.2005.1557]
[8]   Splitting induced generation of soliton trains in layered waveguides [J].
Dreiden, G. V. ;
Khusnutdinova, K. R. ;
Samsonov, A. M. ;
Semenova, I. V. .
JOURNAL OF APPLIED PHYSICS, 2010, 107 (03)
[9]   Waves in microstructured solids and the Boussinesq paradigm [J].
Engelbrecht, Jueri ;
Salupere, Andrus ;
Tamm, Kert .
WAVE MOTION, 2011, 48 (08) :717-726
[10]   Asymptotic integrability of water waves [J].
Fokas, AS ;
Liu, QM .
PHYSICAL REVIEW LETTERS, 1996, 77 (12) :2347-2351