Relation theoretic metrical fixed point results for Suzuki type ZR-contraction with an application

被引:10
作者
Hasanuzzaman, Md [1 ]
Imdad, Mohammad [1 ]
机构
[1] Aligarh Muslim Univ, Dept Math, Aligarh 202002, Uttar Pradesh, India
来源
AIMS MATHEMATICS | 2020年 / 5卷 / 03期
关键词
fixed points; Suzuki type Z(R)-contraction; simulation functions; binary relations; matrix equations; NONLINEAR MATRIX; EQUATIONS; EXISTENCE; MAPPINGS;
D O I
10.3934/math.2020137
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we introduce the concept of Suzuki type Z(R)-contraction by unifying the definitions of Suzuki type Z-contraction and Z(R)-contraction and also provide examples to highlight the genuineness of our newly introduced contraction over earlier mentioned ones. Chiefly, we prove an existence and corresponding uniqueness fixed point results for Suzuki type Z(R)-contraction employing an amorphous binary relation on metric spaces without completeness and also furnish an illustrative example to demonstrate the utility of our main results. Finally, we utilize our main results to discuss the existence and uniqueness of solutions of a family of nonlinear matrix equations.
引用
收藏
页码:2071 / 2087
页数:17
相关论文
共 41 条
[1]   NONLINEAR CONTRACTIONS IN METRIC SPACES UNDER LOCALLY T-TRANSITIVE BINARY RELATIONS [J].
Alam, Aftab ;
Imdad, Mohammad .
FIXED POINT THEORY, 2018, 19 (01) :13-23
[2]   Relation-Theoretic Metrical Coincidence Theorems [J].
Alam, Aftab ;
Imdad, Mohammad .
FILOMAT, 2017, 31 (14) :4421-4439
[3]   Relation-theoretic contraction principle [J].
Alam, Aftab ;
Imdad, Mohammad .
JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2015, 17 (04) :693-702
[4]   A Proposal to the Study of Contractions in Quasi-Metric Spaces [J].
Alsulami, Hamed H. ;
Karapinar, Erdal ;
Khojasteh, Farshid ;
Roldan-Lopez-de-Hierro, Antonio-Francisco .
DISCRETE DYNAMICS IN NATURE AND SOCIETY, 2014, 2014
[5]  
Banach S., 1922, Fundamenta Mathematicae, V3, P133, DOI DOI 10.4064/FM-3-1-133-181
[7]   Solving systems of nonlinear matrix equations involving Lipshitzian mappings [J].
Berzig, Maher ;
Samet, Bessem .
FIXED POINT THEORY AND APPLICATIONS, 2011, :1-10
[8]   ON NONLINEAR CONTRACTIONS [J].
BOYD, DW ;
WONG, JSW .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1969, 20 (02) :458-&
[9]   Simulation functions: a survey of recent results [J].
Chanda, Ankush ;
Dey, Lakshmi Kanta ;
Radenovic, Stojan .
REVISTA DE LA REAL ACADEMIA DE CIENCIAS EXACTAS FISICAS Y NATURALES SERIE A-MATEMATICAS, 2019, 113 (03) :2923-2957
[10]  
Ciric: Lj.B., 2003, Some recent results in metrical fixed point theory