Large-Scale Time Series Clustering Based on Fuzzy Granulation and Collaboration

被引:6
|
作者
Wang, Xiao [1 ]
Yu, Fusheng [2 ]
Zhang, Huixin [3 ]
Liu, Shihu [4 ]
Wang, Jiayin [2 ]
机构
[1] Shandong Youth Univ Polit Sci, Sch Informat Engn, Jinan 250103, Peoples R China
[2] Beijing Normal Univ, Lab Math & Complex Syst, Minist Educ, Sch Math Sci, Beijing 100875, Peoples R China
[3] Capital Univ Econ & Business, Sch Stat, Beijing 100070, Peoples R China
[4] Yunnan Univ Nationalities, Sch Math & Comp Sci, Kunming 650031, Peoples R China
基金
北京市自然科学基金;
关键词
C-MEANS; ALGORITHMS; DESIGN; MODEL; FCM;
D O I
10.1002/int.21726
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Clustering a group of large-scale time series with the same length is a frequently met problem in real world. However, the existing clustering methods often show high computational cost and low efficiency when dealing with this problem. In this paper, we propose a granulation-based horizontal collaborative fuzzy clustering method for this problem. In this method, some new subgroups are built from the given large-scale time series group by segmenting all the time series with time alignment. Thus, all the subsequences in each subgroup have the same length, which are much smaller than the length of the original time series. Just because of the smaller length, the clustering of all subsequences in each subgroup can be easily carried out with lower computation cost and higher efficiency. How to aggregate the clustering results of all subgroups to obtain the clustering result of the given group of large-scale time series becomes the main task of this paper. To solve this problem, we carry out the horizontal collaborative fuzzy clustering on the last subgroup by collaborating the clustering information of the previous subgroups. To obtain much better performance, we first perform fuzzy information granulation on the original group of large-scale time series. After that, the original group of time series is transformed into a group of granular time series. Therefore, the collaborative clustering is carried out on the corresponding granular subgroups. Simulation experiments presented here illustrate the good performance of the algorithm of our method.
引用
收藏
页码:763 / 780
页数:18
相关论文
共 50 条
  • [31] On the stability issues for fuzzy large-scale systems
    Zamani, Iman
    Sadati, Nasser
    Zarif, Mohammad Hadad
    FUZZY SETS AND SYSTEMS, 2011, 174 (01) : 31 - 49
  • [32] Fuzzy-Clustering Time Series: Population-Based an Enhanced Technique
    Mehrmolaei, Soheila
    Keyvanpour, Mohammad Reza
    2017 ARTIFICIAL INTELLIGENCE AND ROBOTICS (IRANOPEN), 2017, : 84 - 90
  • [33] Entropy-based fuzzy clustering of interval-valued time series
    Vitale, Vincenzina
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Mattera, Raffaele
    ADVANCES IN DATA ANALYSIS AND CLASSIFICATION, 2024,
  • [34] A forecasting model for time series based on improvements from fuzzy clustering problem
    Vovan, Tai
    Nguyenhuynh, Luan
    Lethithu, Thuy
    ANNALS OF OPERATIONS RESEARCH, 2022, 312 (01) : 473 - 493
  • [35] Fuzzy representational structures for trend based analysis of time series clustering and classification
    Johnpaul, C., I
    Prasad, Munaga V. N. K.
    Nickolas, S.
    Gangadharan, G. R.
    KNOWLEDGE-BASED SYSTEMS, 2021, 222
  • [36] Cepstral-based clustering of financial time series
    D'Urso, Pierpaolo
    De Giovanni, Livia
    Massari, Riccardo
    D'Ecclesia, Rita L.
    Maharaj, Elizabeth Ann
    EXPERT SYSTEMS WITH APPLICATIONS, 2020, 161
  • [37] Weighted fuzzy time series forecasting based on improved fuzzy C-means clustering algorithm
    Sang, Xiaoshuang
    Zhao, Qinghua
    Lu, Hong
    Lu, Jianfeng
    PROCEEDINGS OF THE 2018 IEEE INTERNATIONAL CONFERENCE ON PROGRESS IN INFORMATICS AND COMPUTING (PIC), 2018, : 80 - 84
  • [38] K-Means Clustering Based High Order Weighted Probabilistic Fuzzy Time Series Forecasting Method
    Gupta, Krishna Kumar
    Kumar, Sanjay
    CYBERNETICS AND SYSTEMS, 2023, 54 (02) : 197 - 219
  • [39] A new fuzzy time series model based on robust clustering for forecasting of air pollution
    Dincer, Nevin Guler
    Akkus, Ozge
    ECOLOGICAL INFORMATICS, 2018, 43 : 157 - 164
  • [40] A fast and efficient clustering based fuzzy time series algorithm (FEFTS) for regression and classification
    Saberi, Hossein
    Rahai, Alireza
    Hatami, Farzad
    APPLIED SOFT COMPUTING, 2017, 61 : 1088 - 1097