Hybrid Graph Convolutional Neural Networks for Landmark-Based Anatomical Segmentation

被引:6
作者
Gaggion, Nicolas [1 ]
Mansilla, Lucas [1 ]
Milone, Diego H. [1 ]
Ferrante, Enzo [1 ]
机构
[1] Univ Nacl Litoral, Res Inst Signals Syst & Computat Intelligence, Sinc I CONICET, Santa Fe, Argentina
来源
MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT I | 2021年 / 12901卷
关键词
Landmark-based segmentation; Graph convolutional neural networks; Spectral convolutions; CHEST RADIOGRAPHS;
D O I
10.1007/978-3-030-87193-2_57
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we address the problem of landmark-based segmentation for anatomical structures. We propose HybridGNet, an encoder-decoder neural architecture which combines standard convolutions for image feature encoding, with graph convolutional neural networks to decode plausible representations of anatomical structures. We benchmark the proposed architecture considering other standard landmark and pixel-based models for anatomical segmentation in chest x-ray images, and found that HybridGNet is more robust to image occlusions. We also show that it can be used to construct landmark-based segmentations from pixel level annotations. Our experimental results suggest that Hybrid-Net produces accurate and anatomically plausible landmark-based segmentations, by naturally incorporating shape constraints within the decoding process via spectral convolutions.
引用
收藏
页码:600 / 610
页数:11
相关论文
共 32 条
  • [21] Milletari Fausto, 2017, Medical Image Computing and Computer Assisted Intervention MICCAI 2017. 20th International Conference. Proceedings: LNCS 10433, P161, DOI 10.1007/978-3-319-66182-7_19
  • [22] V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation
    Milletari, Fausto
    Navab, Nassir
    Ahmadi, Seyed-Ahmad
    [J]. PROCEEDINGS OF 2016 FOURTH INTERNATIONAL CONFERENCE ON 3D VISION (3DV), 2016, : 565 - 571
  • [23] Anatomically Constrained Neural Networks (ACNNs): Application to Cardiac Image Enhancement and Segmentation
    Oktay, Ozan
    Ferrante, Enzo
    Kamnitsas, Konstantinos
    Heinrich, Mattias
    Bai, Wenjia
    Caballero, Jose
    Cook, Stuart A.
    de Marvao, Antonio
    Dawes, Timothy
    O'Regan, Declan P.
    Kainz, Bernhard
    Glocker, Ben
    Rueckert, Daniel
    [J]. IEEE TRANSACTIONS ON MEDICAL IMAGING, 2018, 37 (02) : 384 - 395
  • [24] Paulsen R., 2002, Medical Image Computing and Computer-Assisted Intervention - MICCAI 2002. 5th International Conference. Proceedings, Part II (Lecture Notes in Computer Science Vol.2489), P373
  • [25] Generating 3D Faces Using Convolutional Mesh Autoencoders
    Ranjan, Anurag
    Bolkart, Timo
    Sanyal, Soubhik
    Black, Michael J.
    [J]. COMPUTER VISION - ECCV 2018, PT III, 2018, 11207 : 725 - 741
  • [26] U-Net: Convolutional Networks for Biomedical Image Segmentation
    Ronneberger, Olaf
    Fischer, Philipp
    Brox, Thomas
    [J]. MEDICAL IMAGE COMPUTING AND COMPUTER-ASSISTED INTERVENTION, PT III, 2015, 9351 : 234 - 241
  • [27] SUB-CORTICAL BRAIN STRUCTURE SEGMENTATION USING F-CNN'S
    Shakeri, Mahsa
    Tsogkas, Stavros
    Ferrante, Enzo
    Lippe, Sarah
    Kadoury, Samuel
    Paragios, Nikos
    Kokkinos, Iasonas
    [J]. 2016 IEEE 13TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI), 2016, : 269 - 272
  • [28] Development of a digital image database for chest radiographs with and without a lung nodule: Receiver operating characteristic analysis of radiologists' detection of pulmonary nodules
    Shiraishi, J
    Katsuragawa, S
    Ikezoe, J
    Matsumoto, T
    Kobayashi, T
    Komatsu, K
    Matsui, M
    Fujita, H
    Kodera, Y
    Doi, K
    [J]. AMERICAN JOURNAL OF ROENTGENOLOGY, 2000, 174 (01) : 71 - 74
  • [29] The Emerging Field of Signal Processing on Graphs
    Shuman, David I.
    Narang, Sunil K.
    Frossard, Pascal
    Ortega, Antonio
    Vandergheynst, Pierre
    [J]. IEEE SIGNAL PROCESSING MAGAZINE, 2013, 30 (03) : 83 - 98
  • [30] Non-linear point distribution modelling using a multi-layer perceptron
    Sozou, PD
    Cootes, TF
    Taylor, CJ
    DiMauro, EC
    Lanitis, A
    [J]. IMAGE AND VISION COMPUTING, 1997, 15 (06) : 457 - 463