CHARACTERIZATION OF THREE-DIMENSIONAL PRINTED COMPOSITE SCAFFOLDS PREPARED WITH DIFFERENT FABRICATION METHODS

被引:9
|
作者
Szlazak, K. [1 ]
Jaroszewicz, J. [1 ]
Ostrowska, B. [1 ]
Jaroszewicz, T. [1 ]
Nabialek, M. [2 ]
Szota, M. [3 ]
Swieszkowsk, W. [1 ]
机构
[1] Warsaw Univ Technol, Fac Mat Sci & Engn, 141 Wolosk Str, PL-02507 Warsaw, Poland
[2] Czestochowa Tech Univ, Inst Phys, 19 Armii Krajowej Ave, PL-42200 Czestochowa, Poland
[3] Czestochowa Tech Univ, Inst Mat Sci & Engn, 19 Armii Krajowej Ave, PL-42200 Czestochowa, Poland
关键词
polycaprolactone; tricalcium phosphate; scaffold; rapid prototyping; tissue engineering; computed tomography; MECHANICAL-PROPERTIES; POROUS SCAFFOLDS; TISSUE SCAFFOLDS; BONE; REGENERATION; DESIGN;
D O I
10.1515/amm-2016-0110
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
An optimal method for composites preparation as an input to rapid prototyping fabrication of scaffolds with potential application in osteochondral tissue engineering is still needed. Scaffolds in tissue engineering applications play a role of constructs providing appropriate mechanical support with defined porosity to assist regeneration of tissue. The aim of the presented study was to analyze the influence of composite fabrication methods on scaffolds mechanical properties. The evaluation was performed on polycaprolactone (PCL) with 5 wt% beta-tricalcium phosphate (TCP) scaffolds fabricated using fused deposition modeling (FDM). Three different methods of PCL-TCP composite preparation: solution casting, particles milling, extrusion and injection were used to provide material for scaffold fabrication. The obtained scaffolds were investigated by means of scanning electron microscope, x-ray micro computed tomography, thermal gravimetric analysis and static material testing machine. All of the scaffolds had the same geometry (cylinder, 4x6 mm) and fiber orientation (0/60/120 degrees). There were some differences in the TCP distribution and formation of the ceramic agglomerates in the scaffolds. They depended on fabrication method. The use of composites prepared by solution casting method resulted in scaffolds with the best combination of compressive strength (5.7 +/- 0.2 MPa) and porosity (48.5 +/- 2.7 %), both within the range of trabecular bone.
引用
收藏
页码:645 / 649
页数:5
相关论文
共 50 条
  • [21] Solid freeform fabrication of three-dimensional scaffolds for engineering replacement tissues and organs
    Leong, KF
    Cheah, CM
    Chua, CK
    BIOMATERIALS, 2003, 24 (13) : 2363 - 2378
  • [22] Structural monitoring and modeling of the mechanical deformation of three-dimensional printed poly(ε-caprolactone) scaffolds
    Ribeiro, Joao F. M.
    Oliveira, Sara M.
    Alves, Jose L.
    Pedro, Adriano J.
    Reis, Rui L.
    Fernandes, Emanuel M.
    Mano, Joao F.
    BIOFABRICATION, 2017, 9 (02)
  • [23] Evaluating Changes in Structure and Cytotoxicity During In Vitro Degradation of Three-Dimensional Printed Scaffolds
    Wang, Martha O.
    Piard, Charlotte M.
    Melchiorri, Anthony
    Dreher, Maureen L.
    Fisher, John P.
    TISSUE ENGINEERING PART A, 2015, 21 (9-10) : 1642 - 1653
  • [24] Advanced fabrication for electrospun three-dimensional nanofiber aerogels and scaffolds
    Chen, Yujie
    Shafiq, Muhammad
    Liu, Mingyue
    Morsi, Yosry
    Mo, Xiumei
    BIOACTIVE MATERIALS, 2020, 5 (04) : 963 - 979
  • [25] Biological functionality of extracellular matrix-ornamented three-dimensional printed hydroxyapatite scaffolds
    Kumar, A.
    Nune, K. C.
    Misra, R. D. K.
    JOURNAL OF BIOMEDICAL MATERIALS RESEARCH PART A, 2016, 104 (06) : 1343 - 1351
  • [26] PERFORMANCE OF DIFFERENT THREE-DIMENSIONAL SCAFFOLDS FOR IN VIVO ENDOCHONDRAL BONE GENERATION
    Yang, W.
    Both, S. K.
    van Osch, G. J. V. M.
    Wang, Y.
    Jansen, J. A.
    Yang, F.
    EUROPEAN CELLS & MATERIALS, 2014, 27 : 350 - 364
  • [27] Bosutinib Laden Three-Dimensional Printed Zein Scaffolds Promote Osteogenesis
    Zou, Xianghui
    Yin, Jingyao
    Lei, Qian
    Luo, Xinghong
    Chen, Shuoling
    Yang, Xiaoshan
    Tan, Shenglong
    Ma, Dandan
    ACS APPLIED POLYMER MATERIALS, 2024, 6 (06) : 3082 - 3093
  • [28] Fabrication of three-dimensional tissues
    Tsang, Valerie Liu
    Bhatia, Sangeeta N.
    TISSUE ENGINEERING II: BASICS OF TISSUE ENGINEERING AND TISSUE APPLICATIONS, 2007, 103 : 189 - 205
  • [29] PCL/Alginate Composite Scaffolds for Hard Tissue Engineering: Fabrication, Characterization, and Cellular Activities
    Kim, Yong Bok
    Kim, Geun Hyung
    ACS COMBINATORIAL SCIENCE, 2015, 17 (02) : 87 - 99
  • [30] Facile fabrication of three-dimensional rGO/PPY/TiO2 composite scaffolds with superior antibacterial properties and promoting proliferation
    Mai, Xiaoxue
    Chen, Tiandi
    Wang, Feng
    Xie, Weibo
    MRS COMMUNICATIONS, 2025, 15 (01) : 162 - 168