On a van der Pol type equation with delay in damping

被引:0
作者
Seifert, G [1 ]
机构
[1] Iowa State Univ, Ames, IA 50011 USA
关键词
D O I
10.1090/qam/1637044
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
[No abstract available]
引用
收藏
页码:473 / 477
页数:5
相关论文
共 50 条
[21]   Hopf bifurcation and stability of periodic solutions for van der Pol equation with time delay [J].
Yu, WW ;
Cao, JD .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2005, 62 (01) :141-165
[22]   APPROXIMATE SYMMETRIES OF A VAN DER POL EQUATION [J].
BAIKOV, VA .
DIFFERENTIAL EQUATIONS, 1994, 30 (10) :1684-1686
[23]   DYNAMICS OF THE VAN-DER-POL EQUATION [J].
GUCKENHEIMER, J .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS, 1980, 27 (11) :983-989
[24]   ON PERIODIC SOLUTION OF VAN DER POL EQUATION [J].
PONZO, PJ ;
WAX, N .
IEEE TRANSACTIONS ON CIRCUIT THEORY, 1965, CT12 (01) :135-&
[25]   Hopf bifurcation and stability of periodic solutions for van der Pol equation with distributed delay [J].
Liao, XF ;
Wong, KW ;
Wu, ZF .
NONLINEAR DYNAMICS, 2001, 26 (01) :23-44
[26]   Stability of bifurcating periodic solutions for van der Pol equation with continuous distributed delay [J].
Liao, XF ;
Wong, KW ;
Wu, ZF .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 146 (2-3) :313-334
[27]   Frequency domain approach to Hopf bifurcation for van der Pol equation with distributed delay [J].
Li, SW ;
Liao, XF ;
Li, SR .
LATIN AMERICAN APPLIED RESEARCH, 2004, 34 (04) :267-274
[28]   Hopf Bifurcation and Stability of Periodic Solutions for van der Pol Equation with Distributed Delay [J].
Xiaofeng Liao ;
Kwok-wo Wong ;
Zhongfu Wu .
Nonlinear Dynamics, 2001, 26 :23-44
[29]   Qualitative Analysis of a Van der pol Type Equation With Periodic Forcing Term [J].
郑志明 .
数学进展, 1988, (01) :100-103
[30]   Qualitative Analysis of Van der Pol Type Equation with Periodic Forcing Term [J].
郑志明 .
Acta Mathematica Sinica, 1990, (03) :243-256