Weyl homogeneous manifolds modelled on compact Lie groups

被引:2
作者
Nikolayevsky, Y. [1 ]
机构
[1] La Trobe Univ, Dept Math & Stat, Melbourne, Vic 3086, Australia
关键词
Weyl tensor; Symmetric space; DERIVATIONS; ALGEBRAS; SPACES;
D O I
10.1016/j.difgeo.2010.08.002
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A Riemannian manifold is called Weyl homogeneous, if its Weyl conformal curvature tensor at any two points is "the same", up to a positive multiple. A Weyl homogeneous manifold is modelled on a homogeneous space M(0), if its Weyl tensor at every point is "the same" as the Weyl tensor of M(0), up to a positive multiple. We prove that a Weyl homogeneous manifold M(n), n >= 4, modelled on an irreducible symmetric space M(0) of type II or IV (on a compact simple Lie group with a hi-invariant metric or on its noncompact dual) is conformally equivalent to M(0). (C) 2010 Elsevier B.V. All rights reserved.
引用
收藏
页码:689 / 696
页数:8
相关论文
共 15 条
[1]  
[Anonymous], 1981, GEOMETRIE RIEMANNIEN
[2]  
BENOIST Y, 1988, CR ACAD SCI I-MATH, V307, P901
[3]  
Blazic N., 2005, DIFFERENTIAL GEOMETR, P15
[4]   NONHOMOGENEOUS RELATIVES OF SYMMETRICAL SPACES [J].
BOECKX, E ;
KOWALSKI, O ;
VANHECKE, L .
DIFFERENTIAL GEOMETRY AND ITS APPLICATIONS, 1994, 4 (01) :45-69
[5]  
Collingwood DH., 1993, Van Nostrand Reinhold Mathematics Series
[6]  
Gilkey P, 2007, ADV TEXTS MATH, V2
[7]  
JOSEPH A, 1976, ANN SCI ECOLE NORM S, V9, P1
[8]   MINIMAL REALIZATIONS AND SPECTRUM GENERATING ALGEBRAS [J].
JOSEPH, A .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1974, 36 (04) :325-338
[9]  
Kostant B., 1965, TOPOLOGY S2, V3, P147, DOI [DOI 10.1016/0040-9383(65)90073-X, 10.1016/0040-9383(65)90073-X]
[10]   Generalized derivations of Lie algebras [J].
Leger, GF ;
Luks, EM .
JOURNAL OF ALGEBRA, 2000, 228 (01) :165-203