Algebraic Matroids in Action

被引:13
|
作者
Rosen, Zvi [1 ]
Sidman, Jessica [2 ]
Theran, Louis [3 ]
机构
[1] Florida Atlantic Univ, Dept Math Sci, Boca Raton, FL 33431 USA
[2] Mt Holyoke Coll, Dept Math, S Hadley, MA 01075 USA
[3] Univ St Andrews, Sch Math & Stat, St Andrews KY16 9SS, Fife, Scotland
来源
AMERICAN MATHEMATICAL MONTHLY | 2020年 / 127卷 / 03期
关键词
Primary; 05B35; RIGIDITY; TERMS;
D O I
10.1080/00029890.2020.1689781
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In recent years, various notions of algebraic independence have emerged as a central and unifying theme in a number of areas of applied mathematics, including algebraic statistics and the rigidity theory of bar-and-joint frameworks. In each of these settings, the fundamental problem is to determine the extent to which certain unknowns depend algebraically on given data. This has, in turn, led to a resurgence of interest in algebraic matroids, which are the combinatorial formalism for algebraic (in)dependence. We give a self-contained introduction to algebraic matroids together with examples highlighting their potential application.
引用
收藏
页码:199 / 216
页数:18
相关论文
共 50 条
  • [1] RIGIDITY MATROIDS
    GRAVER, JE
    SIAM JOURNAL ON DISCRETE MATHEMATICS, 1991, 4 (03) : 355 - 368
  • [2] Maps of matroids with applications
    Recski, A
    DISCRETE MATHEMATICS, 2005, 303 (1-3) : 175 - 185
  • [3] Natural realizations of sparsity matroids
    Streinu, Ileana
    Theran, Louis
    ARS MATHEMATICA CONTEMPORANEA, 2011, 4 (01) : 141 - 151
  • [4] Cryptomorphisms for Abstract Rigidity Matroids
    Delucchi, Emanuele
    Lindemann, Tim
    CONFIGURATION SPACES: GEOMETRY, TOPOLOGY AND REPRESENTATION THEORY, 2016, 14 : 195 - 211
  • [5] Chow rings of matroids are Koszul
    Mastroeni, Matthew
    McCullough, Jason
    MATHEMATISCHE ANNALEN, 2022, 387 (3-4) : 1819 - 1851
  • [6] Extended formulations for sparsity matroids
    Iwata, Satoru
    Kamiyama, Naoyuki
    Katoh, Naoki
    Kijima, Shuji
    Okamoto, Yoshio
    MATHEMATICAL PROGRAMMING, 2016, 158 (1-2) : 565 - 574
  • [7] The Steiner Problem for Count Matroids
    Jordan, Tibor
    Kobayashi, Yusuke
    Mahara, Ryoga
    Makino, Kazuhisa
    COMBINATORIAL ALGORITHMS, IWOCA 2020, 2020, 12126 : 330 - 342
  • [8] Maximal matroids in weak order posets
    Jackson, Bill
    Tanigawa, Shin-ichi
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2024, 165 : 20 - 46
  • [9] Count Matroids of Group-Labeled Graphs
    Ikeshita, Rintaro
    Tanigawa, Shin-ichi
    COMBINATORICA, 2018, 38 (05) : 1101 - 1127
  • [10] A counterexample to the extension space conjecture for realizable oriented matroids
    Liu, Gaku
    JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2020, 101 (01): : 175 - 193