Facile Synthesis of a Tin Oxide-Carbon Composite Lithium-Ion Battery Anode with High Capacity Retention

被引:24
作者
Weeks, Jason A. [1 ]
Sun, Ho-Hyun [2 ]
Srinivasan, Hrishikesh S. [2 ]
Burrow, James N. [2 ]
Guerrera, Joseph V. [1 ]
Meyerson, Melissa L. [1 ]
Dolocan, Andrei [3 ]
Heller, Adam [2 ]
Mullins, C. Buddie [1 ,2 ]
机构
[1] Univ Texas Austin, Dept Chem, Austin, TX 78712 USA
[2] Univ Texas Austin, Dept Chem Engn, Austin, TX 78712 USA
[3] Univ Texas Austin, Texas Mat Inst, Austin, TX 78712 USA
基金
美国国家科学基金会;
关键词
Tin oxide; lithium-ion battery; anode; composite; conversion; SNO2; PERFORMANCE; ELECTRODES; GRAPHENE; SPHERES; NANOCOMPOSITES; MICROSPHERES; POLYSULFIDE; NANOFIBERS; DIFFUSION;
D O I
10.1021/acsaem.9b01205
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A tin oxide-carbon composite (SnOx-C) was fabricated as a candidate for use as an anode in lithium-ion batteries through the pyrolysis of a ditin citrate precursor. The simultaneous formation of tin oxide and semigraphitized carbon via a facile, solid-state pyrolysis yielded a composite containing tin oxide nanocrystals surrounded by a framework of flexible, porous carbon. Fabrication of tin oxide nanoparticles encased in semigraphitized carbon, led to the enhanced reversibility of Li2O formation, prevented the aggregation of tin during lithiation and suppressed particle fracturing during cycling. The resulting SnOx-C composite exhibited an exceptional electrochemical performance as an anode material candidate for lithium-ion batteries with an initial capacity of 541 mAh g(-1) and 80.6% capacity retention over 400 cycles at a high current density of 900 mA g(-1) (1C). Lower current density studies [450 mA g(-1) (C/2)] have shown the material to have an initial capacity of 667 mAh g(-1) with 88.7% capacity retention over 400 cycles, whereas a current density of 180 mA g(-1) (C/5) gave a capacity of 710 mAh g(-1) with 88.8% capacity retention over 400 cycles. Through a systematic analysis involving X-ray diffraction, X-ray photoelectron spectroscopy, Raman spectroscopy, cyclic voltammetry, cross-sectional analysis, and post-mortem analysis, we examine how the architecture and composition of the SnOx-C material leads to a high capacity retention tin oxide-carbon composite anode for lithium-ion batteries.
引用
收藏
页码:7244 / 7255
页数:23
相关论文
共 55 条
[1]   High capacity conversion anodes in Li-ion batteries: A review [J].
Bhatt, Mahesh Datt ;
Lee, Jin Yong .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2019, 44 (21) :10852-10905
[2]   Study of styrene butadiene rubber and sodium methyl cellulose as binder for negative electrodes in lithium-ion batteries [J].
Buqa, H. ;
Holzapfel, M. ;
Krumeich, F. ;
Veit, C. ;
Novak, P. .
JOURNAL OF POWER SOURCES, 2006, 161 (01) :617-622
[3]   Microwave-assisted synthesis of SnO2/mesoporous carbon core-satellite microspheres as anode material for high-rate lithium ion batteries [J].
Chang, Pei-Yi ;
Doong, Ruey-an .
JOURNAL OF ALLOYS AND COMPOUNDS, 2019, 775 :214-224
[4]   Kinetics-controlled growth of aligned mesocrystalline SnO2 nanorod arrays for lithium-ion batteries with superior rate performance [J].
Chen, Shuai ;
Wang, Miao ;
Ye, Jianfeng ;
Cai, Jinguang ;
Ma, Yurong ;
Zhou, Henghui ;
Qi, Limin .
NANO RESEARCH, 2013, 6 (04) :243-252
[5]   Synthesis and characterisation of tin(II) and tin(IV) citrates [J].
Deacon, PR ;
Mahon, MF ;
Molloy, KC ;
Waterfield, PC .
JOURNAL OF THE CHEMICAL SOCIETY-DALTON TRANSACTIONS, 1997, (20) :3705-3712
[6]   Ultrasmall SnO2 Nanocrystals: Hot-bubbling Synthesis, Encapsulation in Carbon Layers and Applications in High Capacity Li-Ion Storage [J].
Ding, Liping ;
He, Shulian ;
Miao, Shiding ;
Jorgensen, Matthew R. ;
Leubner, Susanne ;
Yan, Chenglin ;
Hickey, Stephen G. ;
Eychmueller, Alexander ;
Xu, Jinzhang ;
Schmidt, Oliver G. .
SCIENTIFIC REPORTS, 2014, 4
[7]   Raman spectrum of graphene and graphene layers [J].
Ferrari, A. C. ;
Meyer, J. C. ;
Scardaci, V. ;
Casiraghi, C. ;
Lazzeri, M. ;
Mauri, F. ;
Piscanec, S. ;
Jiang, D. ;
Novoselov, K. S. ;
Roth, S. ;
Geim, A. K. .
PHYSICAL REVIEW LETTERS, 2006, 97 (18)
[8]   Raman spectroscopy of graphene and graphite: Disorder, electron-phonon coupling, doping and nonadiabatic effects [J].
Ferrari, Andrea C. .
SOLID STATE COMMUNICATIONS, 2007, 143 (1-2) :47-57
[9]   Chemical and mechanical degradation and mitigation strategies for Si anodes [J].
Galvez-Aranda, Diego E. ;
Verma, Ankit ;
Hankins, Kie ;
Seminario, Jorge M. ;
Mukherjee, Partha P. ;
Balbuena, Perla B. .
JOURNAL OF POWER SOURCES, 2019, 419 :208-218
[10]   Synthesis of tin(IV) oxide@reduced graphene oxide nanocomposites with superior electrochemical behaviors for lithium-ions batteries [J].
Gao, Lvlv ;
Gu, Cuiping ;
Ren, Haibo ;
Song, Xinjie ;
Huang, Jiarui .
ELECTROCHIMICA ACTA, 2018, 290 :72-81