Abelian integrals and limit cycles for a class of cubic polynomial vector fields of Lotka-Volterra type with a rational first integral of degree two

被引:3
作者
Cen, Xiuli [1 ]
Zhao, Yulin [1 ]
Liang, Haihua [2 ]
机构
[1] Sun Yat Sen Univ, Dept Math, Guangzhou 510275, Guangdong, Peoples R China
[2] Guangdong Polytech Normal Univ, Dept Comp Sci, Guangzhou 510665, Guangdong, Peoples R China
关键词
Limit cycles; Cubic polynomial vector fields; Abelian integrals; Chebyshev criterion; Simultaneous bifurcation and; distribution; QUADRATIC REVERSIBLE-SYSTEMS; LINEAR ESTIMATE; DIFFERENTIAL-SYSTEMS; PERIOD ANNULI; NUMBER; ZEROS; PERTURBATIONS; BIFURCATION; CYCLICITY; NESTS;
D O I
10.1016/j.jmaa.2014.12.064
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we study the number of limit cycles which bifurcate from the periodic orbits of cubic polynomial vector fields of Lotka Volterra type having a rational first integral of degree 2, under polynomial perturbations of degree n. The analysis is carried out by estimating the number of zeros of the corresponding Abelian integrals. Moreover, using Chebyshev criterion, we show that the sharp upper bound for the number of zeros of the Abelian integrals defined on each period annulus is 3 for n = 3. The simultaneous bifurcation and distribution of limit cycles for the system with two period annuli under cubic polynomial perturbations are considered. All configurations (u, v) with 0 <= u, v <= 3, u + v <= 5 are realizable. (C) 2015 Elsevier Inc. All rights reserved.
引用
收藏
页码:788 / 806
页数:19
相关论文
共 20 条
[1]   Bifurcations and distribution of limit cycles which appear from two nests of periodic orbits [J].
Asheghi, Rasoul ;
Zangeneh, Hamid R. Z. .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2010, 73 (08) :2398-2409
[2]   Limit cycles of a perturbed cubic polynomial differential center [J].
Buica, Adriana ;
Llibre, Jaume .
CHAOS SOLITONS & FRACTALS, 2007, 32 (03) :1059-1069
[3]   Phase portraits of cubic polynomial vector fields of Lotka-Volterra type having a rational first integral of degree 2 [J].
Cairo, Laurent ;
Llibre, Jaume .
JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2007, 40 (24) :6329-6348
[4]   The cyclicity of period annuli of degenerate quadratic Hamiltonian systems with elliptic segment loops [J].
Chow, SN ;
Li, CZ ;
Yi, YF .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2002, 22 :349-374
[5]  
Coll B, 2005, DYNAM CONT DIS SER A, V12, P275
[6]   QUADRATIC PERTURBATIONS OF A CLASS OF QUADRATIC REVERSIBLE SYSTEMS WITH TWO CENTERS [J].
Coll, Bartomeu ;
Li, Chengzhi ;
Prohens, Rafel .
DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS, 2009, 24 (03) :699-729
[7]   Simultaneous bifurcation of limit cycles from two nests of periodic orbits [J].
Garijo, Antonio ;
Gasull, Arrnengol ;
Jarque, Xavier .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2008, 341 (02) :813-824
[8]   On the shape of limit cycles that bifurcate from Hamiltonian centers [J].
Giacomini, H ;
Llibre, J ;
Viano, M .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2000, 41 (3-4) :523-537
[9]   Bifurcation of critical periods from Pleshkan's isochrones [J].
Grau, M. ;
Villadelprat, J. .
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES, 2010, 81 :142-160
[10]   Linear estimate for the number of zeros of Abelian integrals with cubic Hamiltonians [J].
Horozov, E ;
Iliev, ID .
NONLINEARITY, 1998, 11 (06) :1521-1537