A Bayesian approach to learning classifier systems in uncertain environments

被引:0
作者
Aliprandi, Davide [1 ]
Mancastroppa, Alex [1 ]
Matteucci, Matteo [1 ]
机构
[1] Politecn Milan, Dept Elect & Informat, Via Ponzio 34-5, I-20133 Milan, Italy
来源
GECCO 2006: GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, VOL 1 AND 2 | 2006年
关键词
Bayesian Q-learning; learning classifier systems; XCS; exploration strategy; value of information;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we propose a Bayesian framework for XCS [9], called BXCS. Following [4], we use probability distributions to represent the uncertainty over the classifier estimates of payoff. A novel interpretation of classifier and an extension of the accuracy concept are presented. The probabilistic approach is aimed at increasing XCS learning capabilities and tendency to evolve accurate, maximally general classifiers, especially when uncertainty affects the environment or the reward function. We show that BXCS can approximate optimal solutions in stochastic environments with a high level of uncertainty.
引用
收藏
页码:1537 / +
页数:2
相关论文
共 8 条
[1]  
BUTZ M, 2004, IEEE T EVOLUTIONARY, V8
[2]  
Butz M. V., 2001, Advances in Learning Classifier Systems. Third International Workshop, IWLCS 2000. Revised Papers (Lecture Notes in Artificial Intelligence Vol.1996), P253
[3]  
Casella G., 2021, STAT INFERENCE
[4]  
DEAREN R, 1998, P 15 NAT C ART INT M
[5]  
LANZI P, 1998, P 3 ANN GEN PROGR C, P593
[6]  
Lanzi PL, 1999, GECCO-99: PROCEEDINGS OF THE GENETIC AND EVOLUTIONARY COMPUTATION CONFERENCE, P345
[7]  
Sutton R. S., 1998, Reinforcement Learning: An Introduction, V22447
[8]   Classifier Fitness Based on Accuracy [J].
Wilson, Stewart W. .
EVOLUTIONARY COMPUTATION, 1995, 3 (02) :149-175