Efficient and secure outsourcing of genomic data storage

被引:23
作者
Sousa, Joao Sa [1 ]
Lefebvre, Cedric [2 ]
Huang, Zhicong [1 ]
Raisaro, Jean Louis [1 ]
Aguilar-Melchor, Carlos [3 ]
Killijian, Marc-Olivier [2 ]
Hubaux, Jean-Pierre [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Lab Commun & Applicat LCA 1, Route Cantonale, CH-1015 Lausanne, Switzerland
[2] Univ Toulouse, Lab Anal & Architecture Syst, LAAS CNRS, 7 Ave Colonel Roche, F-31400 Toulouse, France
[3] Univ Toulouse, Toulouse Inst Comp Sci Res, IRIT, 118 Route Narbonne, F-31062 Toulouse, France
关键词
Secure outsourcing; Homomorphic encryption; Private information retrieval; iDash; Genomic variants;
D O I
10.1186/s12920-017-0275-0
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Background: Cloud computing is becoming the preferred solution for efficiently dealing with the increasing amount of genomic data. Yet, outsourcing storage and processing sensitive information, such as genomic data, comes with important concerns related to privacy and security. This calls for new sophisticated techniques that ensure data protection from untrusted cloud providers and that still enable researchers to obtain useful information. Methods: We present a novel privacy-preserving algorithm for fully outsourcing the storage of large genomic data files to a public cloud and enabling researchers to efficiently search for variants of interest. In order to protect data and query confidentiality from possible leakage, our solution exploits optimal encoding for genomic variants and combines it with homomorphic encryption and private information retrieval. Our proposed algorithm is implemented in C++ and was evaluated on real data as part of the 2016 iDash Genome Privacy-Protection Challenge. Results: Results show that our solution outperforms the state-of-the-art solutions and enables researchers to search over millions of encrypted variants in a few seconds. Conclusions: As opposed to prior beliefs that sophisticated privacy-enhancing technologies (PETs) are unpractical for real operational settings, our solution demonstrates that, in the case of genomic data, PETs are very efficient enablers.
引用
收藏
页数:14
相关论文
共 26 条
[1]  
Aguilar-Melchor Carlos, 2016, Proceedings on Privacy Enhancing Technologies, V2016, P155, DOI 10.1515/popets-2016-0010
[2]  
Aguilar-Melchor C, 2016, COMP OPEN SOURCE HOM
[3]   NFLlib: NTT-Based Fast Lattice Library [J].
Aguilar-Melchor, Carlos ;
Barrier, Joris ;
Guelton, Serge ;
Guinet, Adrien ;
Killijian, Marc-Olivier ;
Lepoint, Tancrede .
TOPICS IN CRYPTOLOGY - CT-RSA 2016, 2016, 9610 :341-356
[4]   On the concrete hardness of Learning with Errors [J].
Albrecht, Martin R. ;
Player, Rachel ;
Scott, Sam .
JOURNAL OF MATHEMATICAL CRYPTOLOGY, 2015, 9 (03) :169-203
[5]   A global reference for human genetic variation [J].
Altshuler, David M. ;
Durbin, Richard M. ;
Abecasis, Goncalo R. ;
Bentley, David R. ;
Chakravarti, Aravinda ;
Clark, Andrew G. ;
Donnelly, Peter ;
Eichler, Evan E. ;
Flicek, Paul ;
Gabriel, Stacey B. ;
Gibbs, Richard A. ;
Green, Eric D. ;
Hurles, Matthew E. ;
Knoppers, Bartha M. ;
Korbel, Jan O. ;
Lander, Eric S. ;
Lee, Charles ;
Lehrach, Hans ;
Mardis, Elaine R. ;
Marth, Gabor T. ;
McVean, Gil A. ;
Nickerson, Deborah A. ;
Wang, Jun ;
Wilson, Richard K. ;
Boerwinkle, Eric ;
Doddapaneni, Harsha ;
Han, Yi ;
Korchina, Viktoriya ;
Kovar, Christie ;
Lee, Sandra ;
Muzny, Donna ;
Reid, Jeffrey G. ;
Zhu, Yiming ;
Chang, Yuqi ;
Feng, Qiang ;
Fang, Xiaodong ;
Guo, Xiaosen ;
Jian, Min ;
Jiang, Hui ;
Jin, Xin ;
Lan, Tianming ;
Li, Guoqing ;
Li, Jingxiang ;
Li, Yingrui ;
Liu, Shengmao ;
Liu, Xiao ;
Lu, Yao ;
Ma, Xuedi ;
Tang, Meifang ;
Wang, Bo .
NATURE, 2015, 526 (7571) :68-+
[6]   Private information retrieval [J].
Chor, B ;
Goldreich, O ;
Kushilevitz, E ;
Sudan, M .
JOURNAL OF THE ACM, 1998, 45 (06) :965-982
[7]  
Dierks T., 2008, RFC 5246
[8]   Routes for breaching and protecting genetic privacy [J].
Erlich, Yaniv ;
Narayanan, Arvind .
NATURE REVIEWS GENETICS, 2014, 15 (06) :409-421
[9]  
Fan J., 2012, 2012144 CRYPT EPRIN
[10]  
Grimmett Geoffrey, 2020, Probability and Random Processes