TWO-POINT TAYLOR EXPANSIONS AND ONE-DIMENSIONAL BOUNDARY VALUE PROBLEMS

被引:5
作者
Lopez, Jose L. [1 ]
Perez Sinusia, Ester [2 ]
机构
[1] Univ Publ Navarra, Dept Ingn Matemat & Informat, Pamplona 31006, Spain
[2] Univ Zaragoza, Dept Matemat Aplicada, Zaragoza 50018, Spain
关键词
Second-order linear differential equations; boundary value problem; Frobenius method; two-point Taylor expansions; DIFFERENTIAL-EQUATIONS;
D O I
10.1090/S0025-5718-10-02370-7
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider second-order linear differential equations phi(x)y '' + f(x)y' + g(x)y = h(x) in the interval (-1, 1) with Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions. We consider phi(x), f(x), g(x) and h(x) analytic in a Cassini disk with foci at x = +/- 1 containing the interval (-1, 1). The two-point Taylor expansion of the solution y(x) at the extreme points +/- 1 is used to give a criterion for the existence and uniqueness of solution of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the solution(s) when it exists.
引用
收藏
页码:2103 / 2115
页数:13
相关论文
共 8 条
[1]  
[Anonymous], 1996, INT J MATH EDUC SCI, DOI DOI 10.1080/0020739960270606
[2]   Taylor polynomial solutions of linear differential equations [J].
Kesan, C .
APPLIED MATHEMATICS AND COMPUTATION, 2003, 142 (01) :155-165
[3]  
KING AC, 1954, ANN MATH STUD, V337, P167
[4]  
LAX PD, 2003, PARABOLIC EQUATIONS
[5]   Two-point Taylor expansions of analytic functions [J].
López, JL ;
Temme, NM .
STUDIES IN APPLIED MATHEMATICS, 2002, 109 (04) :297-311
[6]   Multi-point Taylor approximations in one-dimensional linear boundary value problems [J].
Lopez, Jose L. ;
Sinusia, Ester Perez ;
Temme, Nico M. .
APPLIED MATHEMATICS AND COMPUTATION, 2009, 207 (02) :519-527
[7]  
Olde Daalhuis AB, 1998, SIAM REV, V40, P463, DOI 10.1137/S0036144597315341
[8]  
STAKGOLD I, 1988, GREENS FUNCTIONS BOU