Reducibility of first order linear operators on tori via Moser's theorem

被引:40
作者
Feola, R. [1 ]
Giuliani, F. [2 ]
Montalto, R. [3 ]
Procesi, M. [2 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Roma Tre, I-00146 Rome, Italy
[3] Univ Milan, Via Saldini 50, I-20133 Milan, Italy
基金
欧洲研究理事会;
关键词
KAM theory; Reducibility; Hyperbolic PDEs; Nash-Moser; QUASI-PERIODIC SOLUTIONS; PARTIAL-DIFFERENTIAL-EQUATIONS; NONLINEAR-WAVE EQUATIONS; UNBOUNDED PERTURBATIONS; SCHRODINGER-EQUATIONS; KAM THEOREM;
D O I
10.1016/j.jfa.2018.10.009
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper we prove reducibility of a class of first order, quasi-linear, quasi-periodic time dependent PDEs on the torus partial derivative(t)u + zeta . partial derivative(x)u + a(omega t, x) . partial derivative(x)u = 0, x is an element of T-d, zeta is an element of R-d, omega is an element of R-v. As a consequence we deduce a stability result on the associated Cauchy problem in Sobolev spaces. By the identification between first order operators and vector fields this problem can be formulated as the problem of finding a change of coordinates which conjugates a weakly perturbed constant vector field on T nu+d to a constant diophantine flow. For this purpose we generalize Moser's straightening theorem: considering smooth perturbations we prove that the corresponding straightening torus diffeomorphism is smooth, under the assumption that the perturbation is small only in some given Sobolev norm and that the initial frequency belongs to some Cantor-like set. In view of applications in KAM theory for PDEs we provide also tame estimates on the change of variables. (C) 2018 Elsevier Inc. All rights reserved.
引用
收藏
页码:932 / 970
页数:39
相关论文
共 44 条
[1]  
[Anonymous], 1993, LECT NOTES MATH
[2]  
Arnold V. I., 1963, Russian Math. Surveys, V18, P85, DOI [DOI 10.1070/RM1963V018N06ABEH001143, 10.1070/RM1963v018n06ABEH001143]
[3]  
ARNOLD VI, 1962, DOKL AKAD NAUK SSSR+, V145, P487
[4]   Time quasi-periodic gravity water waves in finite depth [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Haus, Emanuele ;
Montalto, Riccardo .
INVENTIONES MATHEMATICAE, 2018, 214 (02) :739-911
[5]   A Nash-Moser-Hormander implicit function theorem with applications to control and Cauchy problems for PDEs [J].
Baldi, Pietro ;
Haus, Emanuele .
JOURNAL OF FUNCTIONAL ANALYSIS, 2017, 273 (12) :3875-3900
[6]   KAM for autonomous quasi-linear perturbations of KdV [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2016, 33 (06) :1589-1638
[7]   KAM for quasi-linear and fully nonlinear forced perturbations of Airy equation [J].
Baldi, Pietro ;
Berti, Massimiliano ;
Montalto, Riccardo .
MATHEMATISCHE ANNALEN, 2014, 359 (1-2) :471-536
[8]   Periodic solutions of fully nonlinear autonomous equations of Benjamin-Ono type [J].
Baldi, Pietro .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2013, 30 (01) :33-77
[9]   Reducibility of 1-d Schrodinger Equation with Time Quasiperiodic Unbounded Perturbations, II [J].
Bambusi, D. .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2017, 353 (01) :353-378
[10]   Time quasi-periodic unbounded perturbations of Schrodinger operators and KAM methods [J].
Bambusi, D ;
Graffi, S .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2001, 219 (02) :465-480