Interpolation of Atomically Thin Hexagonal Boron Nitride and Graphene: Electronic Structure and Thermodynamic Stability in Terms of All-Carbon Conjugated Paths and Aromatic Hexagons

被引:59
作者
Zhu, Jun [2 ,3 ,4 ]
Bhandary, Sumanta [1 ]
Sanyal, Biplab [1 ]
Ottosson, Henrik [2 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
[2] Uppsala Univ, Dept Biochem & Organ Chem, S-75123 Uppsala, Sweden
[3] Xiamen Univ, Dept Chem, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Fujian Prov Key Lab Theoret & Computat Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
基金
瑞典研究理事会;
关键词
PI; BANDGAP; GAS;
D O I
10.1021/jp2016616
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional hexagonal composite materials (BN)(n)(C-2)(m) (n, m = 1, 2,...), which all are isoelectronic with graphene and hexagonal boron nitride (h-BN), have been studied by density functional theory (DFT) with a focus on the relative energies of different material isomers and their band gaps. The well-established chemical concepts of conjugation and aromaticity were exploited to deduce a rationale for identifying the thermodynamically most stable isomer of the specific composites studied. We find that (BN)(n)(C-2)(m) materials will not adopt structures in which the B, C, and N atoms are finely dispersed in the 2D sheet. Instead, the C atoms and C-C bonds, which provide for improved conjugation when compared to B-N bonds, gather and form all-carbon hexagons and paths; that is, the (BN)(n)(C-2)(m) materials prefer nanostructured distributions. Importantly, there are several isomers of similarly low relative energy for each (BN)(n)(C-2)(m) composite type, but the band gaps for these nearly isoenergetic isomers differ by up to 1.0 eV. This feature in the band gap variation of the most stable few isomers is found for each of the four composites studied and at two different DFT levels. Consequently, the formation of a distinct (BN)(n)(C-2)(m) material isomer with a precise (small) band gap will likely be nontrivial. Therefore, one likely has to invoke nonstandard preparation techniques that exploit nanopatterned h-BN or graphene with voids that can be filled with the complementary all-carbon or boron nitride segments.
引用
收藏
页码:10264 / 10271
页数:8
相关论文
共 47 条
[11]   The rise of graphene [J].
Geim, A. K. ;
Novoselov, K. S. .
NATURE MATERIALS, 2007, 6 (03) :183-191
[12]   QUANTUM ESPRESSO: a modular and open-source software project for quantum simulations of materials [J].
Giannozzi, Paolo ;
Baroni, Stefano ;
Bonini, Nicola ;
Calandra, Matteo ;
Car, Roberto ;
Cavazzoni, Carlo ;
Ceresoli, Davide ;
Chiarotti, Guido L. ;
Cococcioni, Matteo ;
Dabo, Ismaila ;
Dal Corso, Andrea ;
de Gironcoli, Stefano ;
Fabris, Stefano ;
Fratesi, Guido ;
Gebauer, Ralph ;
Gerstmann, Uwe ;
Gougoussis, Christos ;
Kokalj, Anton ;
Lazzeri, Michele ;
Martin-Samos, Layla ;
Marzari, Nicola ;
Mauri, Francesco ;
Mazzarello, Riccardo ;
Paolini, Stefano ;
Pasquarello, Alfredo ;
Paulatto, Lorenzo ;
Sbraccia, Carlo ;
Scandolo, Sandro ;
Sclauzero, Gabriele ;
Seitsonen, Ari P. ;
Smogunov, Alexander ;
Umari, Paolo ;
Wentzcovitch, Renata M. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2009, 21 (39)
[14]   A benchmark theoretical study of the electronic ground state and of the singlet-triplet split of benzene and linear acenes [J].
Hajgato, B. ;
Szieberth, D. ;
Geerlings, P. ;
De Proft, F. ;
Deleuze, M. S. .
JOURNAL OF CHEMICAL PHYSICS, 2009, 131 (22)
[15]   Assessment and validation of a screened Coulomb hybrid density functional [J].
Heyd, J ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 2004, 120 (16) :7274-7280
[16]   Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional [J].
Heyd, J ;
Scuseria, GE .
JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (03) :1187-1192
[17]  
Heyd J., 2003, J CHEM PHYS, V118, P8207, DOI [DOI 10.1063/1.1564060, DOI 10.1063/1.2204597]
[18]   Aromaticity in X3Y3H6 (X = B, Al, Ga; Y = N, P, As), X3Z3H3 (Z = O, S, Se), and phosphazenes.: Theoretical study of the structures, energetics, and magnetic properties [J].
Jemmis, ED ;
Kiran, B .
INORGANIC CHEMISTRY, 1998, 37 (09) :2110-2116
[19]   B/C/N materials based on the graphite network [J].
Kawaguchi, M .
ADVANCED MATERIALS, 1997, 9 (08) :615-625
[20]   Quantum Transport Thermometry for Electrons in Graphene [J].
Kechedzhi, K. ;
Horsell, D. W. ;
Tikhonenko, F. V. ;
Savchenko, A. K. ;
Gorbachev, R. V. ;
Lerner, I. V. ;
Fal'ko, V. I. .
PHYSICAL REVIEW LETTERS, 2009, 102 (06)