Interpolation of Atomically Thin Hexagonal Boron Nitride and Graphene: Electronic Structure and Thermodynamic Stability in Terms of All-Carbon Conjugated Paths and Aromatic Hexagons

被引:59
作者
Zhu, Jun [2 ,3 ,4 ]
Bhandary, Sumanta [1 ]
Sanyal, Biplab [1 ]
Ottosson, Henrik [2 ]
机构
[1] Uppsala Univ, Dept Phys & Astron, S-75120 Uppsala, Sweden
[2] Uppsala Univ, Dept Biochem & Organ Chem, S-75123 Uppsala, Sweden
[3] Xiamen Univ, Dept Chem, Xiamen 361005, Peoples R China
[4] Xiamen Univ, Fujian Prov Key Lab Theoret & Computat Chem, Coll Chem & Chem Engn, Xiamen 361005, Peoples R China
基金
瑞典研究理事会;
关键词
PI; BANDGAP; GAS;
D O I
10.1021/jp2016616
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Two-dimensional hexagonal composite materials (BN)(n)(C-2)(m) (n, m = 1, 2,...), which all are isoelectronic with graphene and hexagonal boron nitride (h-BN), have been studied by density functional theory (DFT) with a focus on the relative energies of different material isomers and their band gaps. The well-established chemical concepts of conjugation and aromaticity were exploited to deduce a rationale for identifying the thermodynamically most stable isomer of the specific composites studied. We find that (BN)(n)(C-2)(m) materials will not adopt structures in which the B, C, and N atoms are finely dispersed in the 2D sheet. Instead, the C atoms and C-C bonds, which provide for improved conjugation when compared to B-N bonds, gather and form all-carbon hexagons and paths; that is, the (BN)(n)(C-2)(m) materials prefer nanostructured distributions. Importantly, there are several isomers of similarly low relative energy for each (BN)(n)(C-2)(m) composite type, but the band gaps for these nearly isoenergetic isomers differ by up to 1.0 eV. This feature in the band gap variation of the most stable few isomers is found for each of the four composites studied and at two different DFT levels. Consequently, the formation of a distinct (BN)(n)(C-2)(m) material isomer with a precise (small) band gap will likely be nontrivial. Therefore, one likely has to invoke nonstandard preparation techniques that exploit nanopatterned h-BN or graphene with voids that can be filled with the complementary all-carbon or boron nitride segments.
引用
收藏
页码:10264 / 10271
页数:8
相关论文
共 47 条
[1]  
[Anonymous], 1994, AROMATICITY ANTIAROM
[2]  
Bai JW, 2010, NAT NANOTECHNOL, V5, P190, DOI [10.1038/NNANO.2010.8, 10.1038/nnano.2010.8]
[3]   Porous graphenes: two-dimensional polymer synthesis with atomic precision [J].
Bieri, Marco ;
Treier, Matthias ;
Cai, Jinming ;
Ait-Mansour, Kamel ;
Ruffieux, Pascal ;
Groening, Oliver ;
Groening, Pierangelo ;
Kastler, Marcel ;
Rieger, Ralph ;
Feng, Xinliang ;
Muellen, Klaus ;
Fasel, Roman .
CHEMICAL COMMUNICATIONS, 2009, (45) :6919-6921
[4]   Low band gap polymers for organic photovoltaics [J].
Bundgaard, Eva ;
Krebs, Frederik C. .
SOLAR ENERGY MATERIALS AND SOLAR CELLS, 2007, 91 (11) :954-985
[5]   A systematic study of electronic structure from graphene to graphane [J].
Chandrachud, Prachi ;
Pujari, Bhalchandra S. ;
Haldar, Soumyajyoti ;
Sanyal, Biplab ;
Kanhere, D. G. .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2010, 22 (46)
[6]  
Ci L, 2010, NAT MATER, V9, P430, DOI [10.1038/nmat2711, 10.1038/NMAT2711]
[7]   Control of Graphene's Properties by Reversible Hydrogenation: Evidence for Graphane [J].
Elias, D. C. ;
Nair, R. R. ;
Mohiuddin, T. M. G. ;
Morozov, S. V. ;
Blake, P. ;
Halsall, M. P. ;
Ferrari, A. C. ;
Boukhvalov, D. W. ;
Katsnelson, M. I. ;
Geim, A. K. ;
Novoselov, K. S. .
SCIENCE, 2009, 323 (5914) :610-613
[8]   RELATIVE AROMATICITY IN HETEROPOLAR INORGANIC ANALOGS OF BENZENE [J].
FINK, WH ;
RICHARDS, JC .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 1991, 113 (09) :3393-3398
[9]   Ring currents and aromaticity of monocyclic pi-electron systems C6H6, B3N3H6, B3O3H3, C3N3H3, C5H5-, C7H7+, C3N3F3, C6H3F3, and C6F6 [J].
Fowler, PW ;
Steiner, E .
JOURNAL OF PHYSICAL CHEMISTRY A, 1997, 101 (07) :1409-1413
[10]  
Frisch M. J., 2016, Gaussian 03 Revision B.03