Quantum cohomology of smooth complete intersections in weighted projective spaces and in singular toric varieties

被引:9
作者
Przyjalkowski, V. V. [1 ]
机构
[1] RAS, Steklov Math Inst, Moscow, Russia
关键词
D O I
10.1070/SM2007v198n09ABEH003885
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Givental's theorem for complete intersections in smooth toric varieties is generalized to Fano varieties. The Gromov-Witten invariants are found for Fano varieties of dimension >= 3 that are complete intersections in weighted projective spaces or singular toric varieties. A generalized Riemann-Roch equation is also obtained for such varieties. As a consequence, the counting matrices of smooth Fano threefolds with Picard group Z and anticanonical degrees 2, 8, and 16 are calculated.
引用
收藏
页码:1325 / 1340
页数:16
相关论文
共 29 条
[1]  
Abramowitz M., 1972, HDB MATH FUNCTIONS F
[2]  
BATRYEV VV, 1993, ASTERISQUE, V218, P9
[3]   LET US GO ON WITH VITAMIN-D SUPPLEMENTATION [J].
BEAUVAIS, P .
ARCHIVES DE PEDIATRIE, 1995, 2 (04) :384-384
[4]   Gromov-Witten invariants in algebraic geometry [J].
Behrend, K .
INVENTIONES MATHEMATICAE, 1997, 127 (03) :601-617
[5]   Stacks of stable maps and Gromov-Witten invariants [J].
Behrend, K ;
Manin, Y .
DUKE MATHEMATICAL JOURNAL, 1996, 85 (01) :1-60
[6]   New recursions for genus-zero Gromov-Witten invariants [J].
Bertram, A ;
Kley, HP .
TOPOLOGY, 2005, 44 (01) :1-24
[7]  
Danilov V.I., 1978, Uspekhi Mat. Nauk, V33, P85, DOI 10.1070/RM1978v033n02ABEH002305
[8]  
DOLGACHEV I, 1982, LECT NOTES MATH, V956, P34
[9]  
Fulton W., 1993, ANN MATH STUD, V131
[10]   Relative Gromov-Witten invariants and the mirror formula [J].
Gathmann, A .
MATHEMATISCHE ANNALEN, 2003, 325 (02) :393-412