A weak discrete maximum principle for hp-FEM

被引:11
作者
Solin, Pavel [1 ,3 ]
Vejchodsky, Tomas [2 ]
机构
[1] Univ Texas El Paso, Dept Math Sci, El Paso, TX 79968 USA
[2] Acad Sci, Math Inst, Prague 11567 1, Czech Republic
[3] Acad Sci Czech Republ, Inst Thermomech, Prague 18200 8, Czech Republic
基金
美国国家科学基金会;
关键词
discrete maximum principle; Poisson equation; hp-FEM; higher-order elements;
D O I
10.1016/j.cam.2006.10.028
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we prove a new discrete maximum principle (DMP) for the one-dimensional Poisson equation discretized by the hp-FEM. While the DMP for piecewise-linear elements is a classical result from the 1970s, no extensions to hp-FEM are available to the present day. Due to a negative result by Hohn and Mittelmann from 1981, related to quadratic Lagrange elements, it was long assumed that higher-order finite elements do not satisfy discrete maximum principles. In this paper we explain why it is not possible to make a straightforward extension of the classical DMP to the higher-order case, and we propose stronger assumptions on the right-hand side under which an extension is possible. (c) 2006 Elsevier B.V. All rights reserved.
引用
收藏
页码:54 / 65
页数:12
相关论文
共 19 条
[1]  
[Anonymous], 2005, PARTIAL DIFFERENTIAL
[2]   Approximation properties of the h-p version of the finite element method [J].
Babuska, I ;
Guo, BQ .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1996, 133 (3-4) :319-346
[3]  
Babuska I., 2001, NUMER MATH SCI COMP
[4]  
Ciarlet P. G., 1973, Computer Methods in Applied Mechanics and Engineering, V2, P17, DOI 10.1016/0045-7825(73)90019-4
[5]  
Ciarlet Philippe G, 1970, Aequationes Mathematicae, V4, P338
[6]   TOWARD A UNIVERSAL H-P ADAPTIVE FINITE-ELEMENT STRATEGY .1. CONSTRAINED APPROXIMATION AND DATA STRUCTURE [J].
DEMKOWICZ, L ;
ODEN, JT ;
RACHOWICZ, W ;
HARDY, O .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 1989, 77 (1-2) :79-112
[7]  
Fiedler M., 1986, SPECIAL MATRICES THE
[8]   SOME REMARKS ON THE DISCRETE MAXIMUM-PRINCIPLE FOR FINITE-ELEMENTS OF HIGHER-ORDER [J].
HOHN, W ;
MITTELMANN, HD .
COMPUTING, 1981, 27 (02) :145-154
[9]   Discrete maximum principles for finite element solutions of nonlinear elliptic problems with mixed boundary conditions [J].
Karátson, J ;
Korotov, S .
NUMERISCHE MATHEMATIK, 2005, 99 (04) :669-698
[10]  
Korotov S, 2001, MATH COMPUT, V70, P107, DOI 10.1090/S0025-5718-00-01270-9