RECOGNIZING PRODUCTS OF SURFACES AND SIMPLY CONNECTED 4-MANIFOLDS

被引:0
作者
Hambleton, Ian [1 ]
Kreck, Matthias [2 ]
机构
[1] McMaster Univ, Dept Math, Hamilton, ON L8S 4K1, Canada
[2] Univ Bonn, Math Inst, D-53115 Bonn, Germany
基金
加拿大自然科学与工程研究理事会;
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We give necessary and sufficient conditions for a closed smooth 6-manifold N to be diffeomorphic to a product of a surface F and a simply connected 4-manifold M in terms of basic invariants like the fundamental group and cohomological data. Any isometry of the intersection form of M is realized by a self-diffeomorphism of M x F.
引用
收藏
页码:2253 / 2262
页数:10
相关论文
共 15 条
[1]  
CAPPELL SE, 1972, LECT NOTES MATH, V343
[2]  
Dax J.-P., 1972, Ann. Sci. Ec. Norm. Super. (4), V5, P303, DOI [10.24033/asens.1230, DOI 10.24033/ASENS.1230]
[3]  
Farrell F.T., 1970, PROC SYRUP PURE MATH, V17, P192
[4]   THE TOPOLOGY OF 4-DIMENSIONAL MANIFOLDS [J].
FREEDMAN, MH .
JOURNAL OF DIFFERENTIAL GEOMETRY, 1982, 17 (03) :357-453
[5]  
FRIEDMAN R, 1988, J DIFFER GEOM, V27, P297
[6]   CLASSIFICATION OF CERTAIN 6-MANIFOLDS [J].
JUPP, PE .
PROCEEDINGS OF THE CAMBRIDGE PHILOSOPHICAL SOCIETY, 1973, 73 (MAR) :293-300
[7]  
Kirby R. C., 1977, ANN MATH STUD
[8]   Surgery and duality [J].
Kreck, M .
ANNALS OF MATHEMATICS, 1999, 149 (03) :707-754
[9]   Simply connected asymmetric manifolds [J].
Kreck, Matthias .
JOURNAL OF TOPOLOGY, 2009, 2 (02) :249-261
[10]  
Novikov S.P., 1966, Izv. Akad. Nauk SSSR (Math. USSR-Izv.) Ser. Mat., V30, P207