Mixture structure analysis using the Akaike Information Criterion and the bootstrap

被引:8
|
作者
Solka, JL
Wegman, EJ
Priebe, CE
Poston, WL
Rogers, GW
机构
[1] USN, Dahlgren Div, Ctr Surface Warfare, Syst Res & Technol Dept,Adv Computat Technol Grp, Dahlgren, VA 22448 USA
[2] George Mason Univ, Ctr Computat Stat, Fairfax, VA 22030 USA
[3] Johns Hopkins Univ, Dept Math Sci, Baltimore, MD 21218 USA
关键词
AIC; bootstrap; cluster analysis; mixture models;
D O I
10.1023/A:1008924323509
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given i.i.d. observations x(1),x(2),x(3),...x(n) drawn from a mixture of normal terms, one is often interested in determining the number of terms in the mixture and their defining parameters. Although the problem of determining the number of terms is intractable under the most general assumptions, there is hope of elucidating the mixture structure given appropriate caveats on the underlying mixture. This paper examines a new approach to this problem based on the use of Akaike Information Criterion (AIC) based pruning of data driven mixture models which are obtained from resampled data sets. Results of the application of this procedure to artificially generated data sets and a real world data set are provided.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条
  • [41] Analysis of Web workloads using the Bootstrap methodology
    Lee, J
    Miniscalco, W
    Li, M
    Shambroom, WD
    Buford, J
    WEB CACHING AND CONTENT DELIVERY, 2001, : 235 - 248
  • [42] Applying Least Absolute Shrinkage Selection Operator and Akaike Information Criterion Analysis to Find the Best Multiple Linear Regression Models between Climate Indices and Components of Cow's Milk
    Milani, Mohammad Reza Marami
    Hense, Andreas
    Rahmani, Elham
    Ploeger, Angelika
    FOODS, 2016, 5 (03) : 1 - 17
  • [43] Applying the Akaike Information Criterion (AIC) in earthquake spatial forecasting: a case study on probabilistic seismic hazard function (PSHF) estimation in the Sumatra subduction zone
    Triyoso, Wahyu
    GEOMATICS NATURAL HAZARDS & RISK, 2024, 15 (01)
  • [44] Efficient Bootstrap Tests for the Goodness of Fit in Covariance Structure Analysis
    Masanori Ichikawa
    Sadanori Konishi
    Behaviormetrika, 2001, 28 (2) : 103 - 110
  • [45] Assessing DTI data quality using bootstrap analysis
    Heim, S
    Hahn, K
    Sämann, PG
    Fahrmeir, L
    Auer, DP
    MAGNETIC RESONANCE IN MEDICINE, 2004, 52 (03) : 582 - 589
  • [46] Robustness assessment of regressions using cluster analysis typologies: a bootstrap procedure with application in state sequence analysis
    Roth, Leonard
    Studer, Matthias
    Zuercher, Emilie
    Peytremann-Bridevaux, Isabelle
    BMC MEDICAL RESEARCH METHODOLOGY, 2024, 24 (01)
  • [47] Validating Sequence Analysis Typologies Using Parametric Bootstrap
    Studer, Matthias
    SOCIOLOGICAL METHODOLOGY, VOL 51, ISSUE 2, 2021, 51 (02): : 290 - 318
  • [48] Improved Gaussian Mixture Regression Based on Pseudo Feature Generation Using Bootstrap in Blood Pressure Estimation
    Lee, Soojeong
    Park, Chee-Hyun
    Chang, Joon-Hyuk
    IEEE TRANSACTIONS ON INDUSTRIAL INFORMATICS, 2016, 12 (06) : 2269 - 2280
  • [49] Using the bootstrap method to detect influential DMUs in data envelopment analysis
    Zijiang Yang
    Xiaogang Wang
    Dongming Sun
    Annals of Operations Research, 2010, 173 : 89 - 103
  • [50] An Analysis of Project Risks Using the Non-parametric Bootstrap Technique
    Alborzi, S.
    Aminian, A.
    Mojtahedi, S. M. H.
    Mousavi, S. M.
    IEEM: 2008 INTERNATIONAL CONFERENCE ON INDUSTRIAL ENGINEERING AND ENGINEERING MANAGEMENT, VOLS 1-3, 2008, : 1295 - +