Mixture structure analysis using the Akaike Information Criterion and the bootstrap

被引:8
|
作者
Solka, JL
Wegman, EJ
Priebe, CE
Poston, WL
Rogers, GW
机构
[1] USN, Dahlgren Div, Ctr Surface Warfare, Syst Res & Technol Dept,Adv Computat Technol Grp, Dahlgren, VA 22448 USA
[2] George Mason Univ, Ctr Computat Stat, Fairfax, VA 22030 USA
[3] Johns Hopkins Univ, Dept Math Sci, Baltimore, MD 21218 USA
关键词
AIC; bootstrap; cluster analysis; mixture models;
D O I
10.1023/A:1008924323509
中图分类号
TP301 [理论、方法];
学科分类号
081202 ;
摘要
Given i.i.d. observations x(1),x(2),x(3),...x(n) drawn from a mixture of normal terms, one is often interested in determining the number of terms in the mixture and their defining parameters. Although the problem of determining the number of terms is intractable under the most general assumptions, there is hope of elucidating the mixture structure given appropriate caveats on the underlying mixture. This paper examines a new approach to this problem based on the use of Akaike Information Criterion (AIC) based pruning of data driven mixture models which are obtained from resampled data sets. Results of the application of this procedure to artificially generated data sets and a real world data set are provided.
引用
收藏
页码:177 / 188
页数:12
相关论文
共 50 条
  • [1] Mixture structure analysis using the Akaike Information Criterion and the bootstrap
    Jeffrey L. Solka
    Edward J. Wegman
    Carey E. Priebe
    Wendy L. Poston
    George W. Rogers
    Statistics and Computing, 1998, 8 : 177 - 188
  • [2] Extending the akaike information criterion to mixture regression models
    Naik, Prasad A.
    Shi, Peide
    Tsai, Chih-Ling
    JOURNAL OF THE AMERICAN STATISTICAL ASSOCIATION, 2007, 102 (477) : 244 - 254
  • [3] Bootstrap variants of the Akaike information criterion for mixed model selection
    Shang, Junfeng
    Cavanaugh, Joseph E.
    COMPUTATIONAL STATISTICS & DATA ANALYSIS, 2008, 52 (04) : 2004 - 2021
  • [4] Defect Prediction Using Akaike and Bayesian Information Criterion
    Albahli, Saleh
    Yar, Ghulam Nabi Ahmad Hassan
    COMPUTER SYSTEMS SCIENCE AND ENGINEERING, 2022, 41 (03): : 1117 - 1127
  • [5] Bias correction of the Akaike information criterion in factor analysis
    Ogasawara, Haruhiko
    JOURNAL OF MULTIVARIATE ANALYSIS, 2016, 149 : 144 - 159
  • [6] Modification of the Akaike information criterion to account for seasonal effects
    Kadilar, C
    Erdemìr, C
    JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2003, 73 (02) : 135 - 143
  • [7] Akaike's information criterion for a measure of linkage disequilibrium
    Shimo-onoda, K
    Tanaka, T
    Furushima, K
    Nakajima, T
    Toh, S
    Harata, S
    Yone, K
    Komiya, S
    Adachi, H
    Nakamura, E
    Fujimiya, H
    Inoue, I
    JOURNAL OF HUMAN GENETICS, 2002, 47 (12) : 649 - 655
  • [8] On bias correction of the Akaike information criterion in linear models
    Noda, K
    Miyaoka, E
    Itoh, M
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 1996, 25 (08) : 1845 - 1857
  • [9] Clustering binary variables in subscales using an extended Rasch model and akaike information criterion
    Hardouin, JB
    Mesbah, M
    COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2004, 33 (06) : 1277 - 1294
  • [10] Soft sensor modeling using SVR based on Genetic Algorithm and Akaike Information Criterion
    Huang Zhenyue
    Mei Congli
    2009 INTERNATIONAL CONFERENCE ON INTELLIGENT HUMAN-MACHINE SYSTEMS AND CYBERNETICS, VOL 2, PROCEEDINGS, 2009, : 123 - +