Unified trade-off optimization of quantum harmonic Otto engine and refrigerator

被引:14
作者
Singh, Varinder [1 ]
Singh, Satnam [2 ]
Abah, Obinna [3 ,4 ]
Mustecaplioglu, Ozgur E. [5 ,6 ]
机构
[1] Inst Basic Sci IBS, Ctr Theoret Phys Complex Syst, Daejeon 34126, South Korea
[2] Indian Inst Sci Educ & Res Mohali, Dept Phys Sci, Sect 81, Manauli 140306, Punjab, India
[3] Queens Univ Belfast, Ctr Theoret Atom Mol & Opt Phys, Sch Math & Phys, Belfast BT7 1NN, North Ireland
[4] Newcastle Univ, Sch Math Stat & Phys, Newcastle Upon Tyne NE1 7RU, England
[5] Koc Univ, Dept Phys, TR-34450 Istanbul, Turkey
[6] TUBITAK Res Inst Fundamental Sci, TR-41470 Gebze, Turkey
基金
英国工程与自然科学研究理事会;
关键词
HEAT ENGINES; MAXIMUM POWER; FEYNMANS RATCHET; EFFICIENCY; PERFORMANCE; THERMODYNAMICS; CRITERION; OUTPUT; WORK;
D O I
10.1103/PhysRevE.106.024137
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate quantum Otto engine and refrigeration cycles of a time-dependent harmonic oscillator operating under the conditions of maximum Q function, a trade-off objective function which represents a compromise between energy benefits and losses for a specific job, for both adiabatic and nonadiabatic (sudden) frequency modulations. We derive analytical expressions for the efficiency and coefficient of performance of the Otto cycle. For the case of adiabatic driving, we point out that in the low-temperature regime, the harmonic Otto engine (refrigerator) can be mapped to Feynman's ratchet and pawl model which is a steady-state classical heat engine. For the sudden switch of frequencies, we obtain loop-like behavior of the efficiency-work curve, which is characteristic of irreversible heat engines. Finally, we discuss the behavior of cooling power at maximum Q function.
引用
收藏
页数:10
相关论文
共 84 条
[1]   Single-Ion Heat Engine at Maximum Power [J].
Abah, O. ;
Ronagel, J. ;
Jacob, G. ;
Deffner, S. ;
Schmidt-Kaler, F. ;
Singer, K. ;
Lutz, E. .
PHYSICAL REVIEW LETTERS, 2012, 109 (20)
[2]   Optimal performance of a quantum Otto refrigerator [J].
Abah, Obinna ;
Lutz, Eric .
EPL, 2016, 113 (06)
[3]   Efficiency of heat engines coupled to nonequilibrium reservoirs [J].
Abah, Obinna ;
Lutz, Eric .
EPL, 2014, 106 (02)
[4]   THERMODYNAMICS IN FINITE-TIME [J].
ANDRESEN, B ;
SALAMON, P ;
BERRY, RS .
PHYSICS TODAY, 1984, 37 (09) :62-70
[5]   Current Trends in Finite-Time Thermodynamics [J].
Andresen, Bjarne .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2011, 50 (12) :2690-2704
[6]   AN ECOLOGICAL OPTIMIZATION CRITERION FOR FINITE-TIME HEAT ENGINES [J].
ANGULOBROWN, F .
JOURNAL OF APPLIED PHYSICS, 1991, 69 (11) :7465-7469
[7]  
[Anonymous], 2008, FEYNMAN LECT PHYS
[8]   True nature of the Curzon-Ahlborn efficiency [J].
Apertet, Y. ;
Ouerdane, H. ;
Goupil, C. ;
Lecoeur, Ph. .
PHYSICAL REVIEW E, 2017, 96 (02)
[9]   Revisiting Feynman's ratchet with thermoelectric transport theory [J].
Apertet, Y. ;
Ouerdane, H. ;
Goupil, C. ;
Lecoeur, Ph .
PHYSICAL REVIEW E, 2014, 90 (01)
[10]   On the efficiency at maximum cooling power [J].
Apertet, Y. ;
Ouerdane, H. ;
Michot, A. ;
Goupil, C. ;
Lecoeur, Ph. .
EPL, 2013, 103 (04)