GRAPHS OF CURVES ON INFINITE-TYPE SURFACES WITH MAPPING CLASS GROUP ACTIONS

被引:18
作者
Durham, Matthew Gentry [1 ]
Fanoni, Federica [2 ]
Vlamis, Nicholas G. [3 ]
机构
[1] Univ Calif Riverside, 900 Univ Ave, Riverside, CA 92521 USA
[2] Heidelberg Univ, Neuenheimer Feld 205, D-69120 Heidelberg, Germany
[3] CUNY Queens Coll, Dept Math, 65-30 Kissena Blvd, Flushing, NY 11367 USA
基金
美国国家科学基金会;
关键词
mapping class groups; surface homeomorphisms; curve graphs; infinite-type surfaces; UNIFORM HYPERBOLICITY; GEOMETRY; ARC;
D O I
10.5802/aif.3217
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study when the mapping class group of an infinite-type surface S admits an action with unbounded orbits on a connected graph whose vertices are simple closed curves on S. We introduce a topological invariant for infinite-type surfaces that determines in many cases whether there is such an action. This allows us to conclude that, as non-locally compact topological groups, many big mapping class groups have nontrivial coarse geometry in the sense of Rosendal.
引用
收藏
页码:2581 / 2612
页数:32
相关论文
共 35 条
[1]  
[Anonymous], 1960, Princeton Mathematical Series
[2]  
[Anonymous], 1920, Fund. Math, DOI DOI 10.4064/FM-1-1-17-27
[3]  
Aramayona J., 2016, MATH Z
[4]   ARC AND CURVE GRAPHS FOR INFINITE-TYPE SURFACES [J].
Aramayona, Javier ;
Fossas, Ariadna ;
Parlier, Hugo .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2017, 145 (11) :4995-5006
[5]   Hyperbolicity ray graph and quasi-morphisms on a large modular group [J].
Bavard, Juliette .
GEOMETRY & TOPOLOGY, 2016, 20 (01) :491-535
[6]   Geometry and rigidity of mapping class groups [J].
Behrstock, Jason ;
Kleiner, Bruce ;
Minsky, Yair ;
Mosher, Lee .
GEOMETRY & TOPOLOGY, 2012, 16 (02) :781-888
[7]   Dimension and rank for mapping class groups [J].
Behrstock, Jason A. ;
Minsky, Yair N. .
ANNALS OF MATHEMATICS, 2008, 167 (03) :1055-1077
[8]  
Bestvina M., 2010, PUBL MATH-PARIS, V122, P1
[9]  
Bestvina M., 2016, COMMUNICATION
[10]   LARGE-SCALE RIGIDITY PROPERTIES OF THE MAPPING CLASS GROUPS [J].
Bowditch, Brian H. .
PACIFIC JOURNAL OF MATHEMATICS, 2018, 293 (01) :1-73