DYNAMIC STIFFNESS VIBRATION ANALYSIS OF THICK SPHERICAL SHELL SEGMENTS WITH VARIABLE THICKNESS

被引:20
作者
Efraim, Elia [1 ]
Eisenberger, Moshe [2 ]
机构
[1] Ariel Univ, Ctr Samaria, Dept Civil Engn, IL-40700 Ariel, Israel
[2] Technion Israel Inst Technol, Fac Civil & Environm Engn, IL-32000 Technion, Haifa, Israel
关键词
vibrations; thick shell; spherical shell; variable thickness; dynamic stiffness; exact element method;
D O I
10.2140/jomms.2010.5.821
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
A dynamic stiffness method is presented for determining the free vibration frequencies and mode shapes of thick spherical shell segments with variable thickness and different boundary conditions. The analysis uses the equations of the two-dimensional theory of elasticity, in which the effects of both transverse shear stresses and rotary inertia are accounted for. The displacement components are taken to be sinusoidal in time, periodic in the circumferential direction, constant through the thickness, and solved exactly in the meridional direction using the exact element method. The shape functions are derived from the exact solutions for the system of the differential equation of motion with variable coefficients. The dynamic stiffness matrix is derived from the exact shape functions and their derivatives. High-precision numerical results are presented for thick spherical shell segments with constant or linearly varying thickness and for several combinations of boundary conditions. Comparison is made with results of published research and with two-and three-dimensional finite element analyses.
引用
收藏
页码:821 / 835
页数:15
相关论文
共 11 条
[1]  
[Anonymous], VIBRATIONS SHELLS
[2]   AN EXACT ELEMENT METHOD [J].
EISENBERGER, M .
INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN ENGINEERING, 1990, 30 (02) :363-370
[3]   FREE-VIBRATION ANALYSIS OF THICK SPHERICAL-SHELLS [J].
GAUTHAM, BP ;
GANESAN, N .
COMPUTERS & STRUCTURES, 1992, 45 (02) :307-313
[4]   VIBRATIONS OF THICK FREE CIRCULAR PLATES, EXACT VERSUS APPROXIMATE SOLUTIONS [J].
HUTCHINSON, JR .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 1984, 51 (03) :581-585
[5]   Three-dimensional vibrations of thick spherical shell segments with variable thickness (vol 37, pg 4811, 2000) [J].
Kang, JH ;
Leissa, AW .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2006, 43 (09) :2848-2851
[6]   Three-dimensional vibrations of thick spherical shell segments with variable thickness [J].
Kang, JH ;
Leissa, AW .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2000, 37 (35) :4811-4823
[7]   Elastic deformation of thick, laminated composite shells [J].
Leissa, AW ;
Chang, JD .
COMPOSITE STRUCTURES, 1996, 35 (02) :153-170
[8]   Modeling the vibration of a variable thickness ellipsoidal dish with central point clamp or concentric surface clamp [J].
Lim, CW ;
Kitipornchai, S ;
Liew, KM .
JOURNAL OF THE ACOUSTICAL SOCIETY OF AMERICA, 1996, 99 (01) :362-372
[9]  
MINDLIN RD, 1951, J APPL MECH-T ASME, V18, P31
[10]   Recent research advances in the dynamic behavior of shells: 1989-2000, Part 2: Homogeneous shells [J].
Qatu, Mohamad S. .
Applied Mechanics Reviews, 2002, 55 (05) :415-434