A Theoretical Study on the Design, Structure, and Electronic Properties of Novel Forms of Graphynes

被引:56
作者
Nulakani, Naga Venkateswara Rao [1 ,2 ]
Subramanian, Venkatesan [1 ,2 ]
机构
[1] CSIR, Cent Leather Res Inst, Chem Lab, Madras 600020, Tamil Nadu, India
[2] Acad Sci & Innovat Res AcSIR, CSIR CLRI Campus, Madras 600020, Tamil Nadu, India
关键词
TOTAL-ENERGY CALCULATIONS; 2-DIMENSIONAL MATERIALS; TOPOLOGICAL INSULATORS; ALPHA-GRAPHYNE; DIRAC FERMIONS; GRAPHENE; CARBON; PLANAR; FUNCTIONALIZATION; OPPORTUNITIES;
D O I
10.1021/acs.jpcc.6b03562
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
alpha-, beta-, gamma- and 6,6,12-graphynes are well established one-atom-thick two-dimensional (2D) materials in the graphyne family. These 2D sheets have been mainly designed by incorporating an acetylenic linker (-C equivalent to C-) in graphene with different ratios. The graphdiynes and their higher order 2D architectures have also been studied to elucidate the effect of length of linker (-C equivalent to C-C equivalent to C-) on the structure-property relationship. In the present investigation, we have modeled the three novel analogues of alpha-graphyne by increasing the acetylenic linkers and expanding the sp(2) network. The structure, stability, and electronic properties of novel forms of graphyne architectures were examined by using the computational methods within the framework of density functional theory (DFT). The molecular dynamics simulations show that only thermodynamically stable and rule out the existence of other two newly designed systems. The electronic structure calculations reveal that, the stable 2D sheet exhibit semimetallic Dirac point features. Further, the semimetallic carbon sheet has massless Dirac Fermions (m* = 0.014 m(0)) akin to those of gamma-graphyne and graphdiyne. The predicted Fermi velocity (v(f(K -> M)) = 7.13 X 10(5) m/s) of the novel 2D sheet is higher than that of alpha-graphyne and close to that of graphene. Furthermore, the electronic properties of armchair and zigzag nanoribbons of stable 2D sheet have also been investigated. Interestingly, one of the zigzag nanoribbons shows linear band dispersion (Dirac point) in the proximity of the Fermi level, and others exhibit semiconducting to metallic properties.
引用
收藏
页码:15153 / 15161
页数:9
相关论文
共 96 条
[1]   Pseudodiffusive conduction at the Dirac point of a normal-superconductor junction in graphene [J].
Akhmerov, A. R. ;
Beenakker, C. W. J. .
PHYSICAL REVIEW B, 2007, 75 (04)
[2]   Two-Dimensional, Ordered, Double Transition Metals Carbides (MXenes) [J].
Anasori, Babak ;
Xie, Yu ;
Beidaghi, Majid ;
Lu, Jun ;
Hosler, Brian C. ;
Hultman, Lars ;
Kent, Paul R. C. ;
Gogotsi, Yury ;
Barsoum, Michel W. .
ACS NANO, 2015, 9 (10) :9507-9516
[3]   Tin and germanium monochalcogenide IV-VI semiconductor nanocrystals for use in solar cells [J].
Antunez, Priscilla D. ;
Buckley, Jannise J. ;
Brutchey, Richard L. .
NANOSCALE, 2011, 3 (06) :2399-2411
[4]   STRUCTURE-PROPERTY PREDICTIONS FOR NEW PLANAR FORMS OF CARBON - LAYERED PHASES CONTAINING SP2 AND SP ATOMS [J].
BAUGHMAN, RH ;
ECKHARDT, H ;
KERTESZ, M .
JOURNAL OF CHEMICAL PHYSICS, 1987, 87 (11) :6687-6699
[5]   Recent Advances in Two-Dimensional Materials beyond Graphene [J].
Bhimanapati, Ganesh R. ;
Lin, Zhong ;
Meunier, Vincent ;
Jung, Yeonwoong ;
Cha, Judy ;
Das, Saptarshi ;
Xiao, Di ;
Son, Youngwoo ;
Strano, Michael S. ;
Cooper, Valentino R. ;
Liang, Liangbo ;
Louie, Steven G. ;
Ringe, Emilie ;
Zhou, Wu ;
Kim, Steve S. ;
Naik, Rajesh R. ;
Sumpter, Bobby G. ;
Terrones, Humberto ;
Xia, Fengnian ;
Wang, Yeliang ;
Zhu, Jun ;
Akinwande, Deji ;
Alem, Nasim ;
Schuller, Jon A. ;
Schaak, Raymond E. ;
Terrones, Mauricio ;
Robinson, Joshua A. .
ACS NANO, 2015, 9 (12) :11509-11539
[6]   IMPROVED TETRAHEDRON METHOD FOR BRILLOUIN-ZONE INTEGRATIONS [J].
BLOCHL, PE ;
JEPSEN, O ;
ANDERSEN, OK .
PHYSICAL REVIEW B, 1994, 49 (23) :16223-16233
[7]  
Bonaccorso F, 2010, NAT PHOTONICS, V4, P611, DOI [10.1038/NPHOTON.2010.186, 10.1038/nphoton.2010.186]
[8]   Progress, Challenges, and Opportunities in Two-Dimensional Materials Beyond Graphene [J].
Butler, Sheneve Z. ;
Hollen, Shawna M. ;
Cao, Linyou ;
Cui, Yi ;
Gupta, Jay A. ;
Gutierrez, Humberto R. ;
Heinz, Tony F. ;
Hong, Seung Sae ;
Huang, Jiaxing ;
Ismach, Ariel F. ;
Johnston-Halperin, Ezekiel ;
Kuno, Masaru ;
Plashnitsa, Vladimir V. ;
Robinson, Richard D. ;
Ruoff, Rodney S. ;
Salahuddin, Sayeef ;
Shan, Jie ;
Shi, Li ;
Spencer, Michael G. ;
Terrones, Mauricio ;
Windl, Wolfgang ;
Goldberger, Joshua E. .
ACS NANO, 2013, 7 (04) :2898-2926
[9]   The electronic properties of graphene [J].
Castro Neto, A. H. ;
Guinea, F. ;
Peres, N. M. R. ;
Novoselov, K. S. ;
Geim, A. K. .
REVIEWS OF MODERN PHYSICS, 2009, 81 (01) :109-162
[10]   Band Gap Engineering of Chemical Vapor Deposited Graphene by in Situ BN Doping [J].
Chang, Cheng-Kai ;
Kataria, Satender ;
Kuo, Chun-Chiang ;
Ganguly, Abhijit ;
Wang, Bo-Yao ;
Hwang, Jeong-Yuan ;
Huang, Kay-Jay ;
Yang, Wei-Hsun ;
Wang, Sheng-Bo ;
Chuang, Cheng-Hao ;
Chen, Mi ;
Huang, Ching-I ;
Pong, Way-Faung ;
Song, Ker-Jar ;
Chang, Shoou-Jinn ;
Guo, Jing-Hua ;
Tai, Yian ;
Tsujimoto, Masahiko ;
Isoda, Seiji ;
Chen, Chun-Wei ;
Chen, Li-Chyong ;
Chen, Kuei-Hsien .
ACS NANO, 2013, 7 (02) :1333-1341