A note on jets of entire curves in semi-abelian varieties

被引:7
作者
Noguchi, J [1 ]
Winkelmann, J
机构
[1] Univ Tokyo, Grad Sch Math Sci, Tokyo 1538914, Japan
[2] Korea Inst Adv Study, Sch Math, Seoul 130012, South Korea
关键词
D O I
10.1007/s00209-003-0513-3
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove a product decomposition of the Zariski closure of every jet lift of an entire curve f:C-->A into a semi-abelian variety A, provided that f is of finite order. On the other hand, by giving an example of f into a three dimensional abelian variety we show that this product decomposition does not hold in general; there was a gap in the proofs of [2], Proposition 1.8 (ii) and of [6], Theorem 2.2.
引用
收藏
页码:705 / 710
页数:6
相关论文
共 6 条
[2]   On holomorphic curves in semi-Abelian varieties [J].
Noguchi, J .
MATHEMATISCHE ZEITSCHRIFT, 1998, 228 (04) :713-721
[3]   The value distribution of holomorphic curves into semi-Abelian varieties [J].
Noguchi, J ;
Winkelmann, J ;
Yamanoi, K .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 331 (03) :235-240
[4]   The second main theorem for holomorphic curves into semi-Abelian varieties [J].
Noguchi, J ;
Winkelmann, J ;
Yamanoi, K .
ACTA MATHEMATICA, 2002, 188 (01) :129-161
[5]  
NOGUCHI J, 1990, T MATH MONO, V80
[6]   A generalized Bloch's theorem and the hyperbolicity of the complement of an ample divisor in an Abelian variety [J].
Siu, YT ;
Yeung, SK .
MATHEMATISCHE ANNALEN, 1996, 306 (04) :743-758