A CONVERGENT NONCONFORMING FINITE ELEMENT METHOD FOR COMPRESSIBLE STOKES FLOW

被引:19
作者
Karlsen, Kenneth H. [1 ,2 ]
Karper, Trygve K. [3 ]
机构
[1] Univ Oslo, Ctr Math Applicat, N-0316 Oslo, Norway
[2] Ctr Biomed Comp, Simula Res Lab, N-1325 Lysaker, Norway
[3] NTNU, Dept Math Sci, NO-7491 Trondheim, Norway
关键词
semistationary Stokes system; compressible fluid flow; nonconforming finite element; discontinuous Galerkin scheme; discrete Hodge decomposition; convergence; DIFFERENCE SCHEME; VOLUME SCHEME; EQUATIONS;
D O I
10.1137/09076310X
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We propose a nonconforming finite element method for isentropic viscous gas flow in situations where convective effects may be neglected. We approximate the continuity equation by a piecewise constant discontinuous Galerkin method. The velocity (momentum) equation is approximated by a finite element method on div-curl form using the nonconforming Crouzeix-Raviart space. Our main result is that the finite element method converges to a weak solution. The main challenge is to demonstrate the strong convergence of the density approximations, which is mandatory in view of the nonlinear pressure function. The analysis makes use of a higher integrability estimate on the density approximations, an equation for the "effective viscous flux," and renormalized versions of the discontinuous Galerkin method.
引用
收藏
页码:1846 / 1876
页数:31
相关论文
共 16 条
[1]  
[Anonymous], 1991, SPRINGER SER COMPUT
[2]  
Arnold D.N., 1989, ANN SCUOLA NORM-SCI, V15, P169
[3]  
BERNARDI C, 1991, COMMUN PART DIFF EQ, V16, P59
[4]   A nonconforming finite element method for a two-dimensional curl-curl and grad-div problem [J].
Brenner, S. C. ;
Cui, J. ;
Li, F. ;
Sung, L. -Y. .
NUMERISCHE MATHEMATIK, 2008, 109 (04) :509-533
[5]  
CROUZEIX M, 1973, REV FR AUTOMAT INFOR, V7, P33
[6]  
Eymard R, 2010, MATH COMPUT, V79, P649, DOI 10.1090/S0025-5718-09-02310-2
[7]  
Feireisl E., 2004, OXFORD LECT SER MATH, V26
[8]   A CONVERGENT FINITE ELEMENT-FINITE VOLUME SCHEME FOR THE COMPRESSIBLE STOKES PROBLEM. PART I: THE ISOTHERMAL CASE [J].
Gallouet, T. ;
Herbin, R. ;
Latche, J. -C. .
MATHEMATICS OF COMPUTATION, 2009, 78 (267) :1333-1352
[9]  
Girault V., 1986, FINITE ELEMENT METHO, V5, DOI DOI 10.1007/978
[10]  
KARLSEN KH, 2010, MATH COMP IN PRESS