Error estimates of the weakly over-penalized symmetric interior penalty method for two variational inequalities

被引:18
作者
Zeng, Yuping [1 ]
Chen, Jinru [2 ]
Wang, Feng [2 ]
机构
[1] Flaying Univ, Sch Math, Meizhou 514015, Peoples R China
[2] Nanjing Normal Univ, Sch Math Sci, Jiangsu Key Lab NSLSCS, Nanjing 210023, Jiangsu, Peoples R China
关键词
Signorini problem; Obstacle problem; Interior penalty method; Weakly over-penalization; A priori error estimate; DISCONTINUOUS GALERKIN METHODS; FINITE-ELEMENT APPROXIMATION; ELLIPTIC OBSTACLE PROBLEMS; SIGNORINI PROBLEM;
D O I
10.1016/j.camwa.2015.02.022
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, we apply the weakly over-penalized symmetric interior penalty method to solve some variational inequalities which include the Signorini problem and the obstacle problem. Optimal a priori error estimates in energy norm are derived. Some numerical tests are provided to confirm our theoretical analysis. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:760 / 770
页数:11
相关论文
共 28 条
  • [1] [Anonymous], 2008, Numerical Methods for Nonlinear Variational Problems
  • [2] A MIMETIC DISCRETIZATION OF ELLIPTIC OBSTACLE PROBLEMS
    Antonietti, Paola F.
    da Veiga, Lourenco Beirao
    Verani, Marco
    [J]. MATHEMATICS OF COMPUTATION, 2013, 82 (283) : 1379 - 1400
  • [3] Unified analysis of discontinuous Galerkin methods for elliptic problems
    Arnold, DN
    Brezzi, F
    Cockburn, B
    Marini, LD
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2002, 39 (05) : 1749 - 1779
  • [4] A posteriori error estimates of hp-adaptive IPDG-FEM for elliptic obstacle problems
    Banz, Lothar
    Stephan, Ernst R.
    [J]. APPLIED NUMERICAL MATHEMATICS, 2014, 76 : 76 - 92
  • [5] A Mixed Finite Element Method for the Stokes Equations Based on a Weakly Over-Penalized Symmetric Interior Penalty Approach
    Barker, Andrew T.
    Brenner, Susanne C.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2014, 58 (02) : 290 - 307
  • [6] Belhachmi Z, 2003, MATH COMPUT, V72, P83, DOI 10.1090/S0025-5718-01-01413-2
  • [7] Numerical simulation of some variational inequalities arisen from unilateral contact problems by the finite element methods
    Ben Belgacem, F
    [J]. SIAM JOURNAL ON NUMERICAL ANALYSIS, 2000, 37 (04) : 1198 - 1216
  • [8] Bosing P.R., 2014, J SCI COMPUT
  • [9] Brenner S., 2008, MATH THEORY FINITE E, P404, DOI DOI 10.1007/978-0-387-75934-0
  • [10] An Intrinsically Parallel Finite Element Method
    Brenner, S. C.
    Gudi, T.
    Owens, L.
    Sung, L. -Y.
    [J]. JOURNAL OF SCIENTIFIC COMPUTING, 2010, 42 (01) : 118 - 121